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ABSTRACT 

Word sense disambiguation (WSD) in multilingual contexts remains a significant challenge in natural language 

processing (NLP), primarily due to the inherent ambiguity of natural language. Words often have multiple 

meanings, and the task of WSD is to identify the correct sense of a word in a given context. Despite extensive 

research in this area, WSD continues to pose significant challenges, especially in multilingual contexts where 

linguistic diversity adds further complexity.This paper introduces a novel multi-linguistic system using 

Transformer Neural Networks to improve WSD across multiple languages. By combining contextualized word 

embedding’s from pre-trained multilingual models with a fine-tuned Transformer architecture, the system 

captures semantic nuances effectively. Evaluation on standard WSD benchmarks shows significant accuracy 

improvements over traditional and state-of-the-art methods, with robust performance across languages, 

including zero-shot scenarios. This paper highlights the benefits of a multi-linguistic approach in enhancing 

model interpretability, generalization, and inclusivity for more versatile NLP applications. Here we proposed an 

integrated multilingual transformer neural network (IMTNN) which blends two neural networks based on 

transformer model for translation and word sensing process. This network has different layers with nodes and 

each nodes can perform transformer-based process which helps in reducing complexity independently. For these 

we used different corpus from SemCor,IMS and WordNet to calculate the Collocation score for different words 

and their relations. This provides more accuracy and increases the speed in retrieving related results. 

I. INTRODUCTION 

Word Sense Disambiguation (WSD) is a cornerstone task in the field of Natural Language Processing (NLP), 

fundamentally concerned with the challenge of determining the correct meaning of a word based on its context 

within a given text. Language is inherently polysemous, meaning that many words carry multiple meanings or 

senses. For instance, the word "bank" can refer to a financial institution or the side of a river, depending on the 

context in which it is used. Accurately disambiguating such words is essential for the effective functioning of 

various NLP applications, including machine translation, information retrieval, sentiment analysis, and text 

comprehension. Despite extensive research and numerous methodological advancements over the decades, 

WSD continues to pose significant challenges, particularly when extending these techniques to multilingual 

environments where cross-linguistic variations further complicate the disambiguation process. 

Traditional approaches to WSD primarily relied on knowledge-based methods, statistical techniques, and 

supervised learning models. However, the advent of deep learning and, specifically, Transformer Neural 

Networks has revolutionized the field, enabling more sophisticated and context-aware disambiguation strategies.  

Transformers leverage self-attention mechanisms to capture long-range dependencies and contextual 

relationships within the text, allowing for a more nuanced understanding of word meanings in context. Pre-

trained multilingual models, such as BERT (Bidirectional Encoder Representations from Transformers) and its 

variants, have further enhanced the capabilities of WSD systems by providing rich, contextualized word 

embedding’s that encapsulate semantic information across multiple languages. 

Misinterpretation of word senses can lead to translations that are grammatically correct but semantically flawed, 

thereby diminishing the quality and reliability of the translation system. Similarly, in information retrieval, 

understanding the precise meaning of query terms ensures that the most relevant documents are retrieved, 

enhancing the user experience and the effectiveness of search engines.  

In this paper we introduces a novel blended multi-linguistic system that harnesses the power of Transformer 

Neural Networks to tackle the WSD task across multiple languages simultaneously. The primary objective of 
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our approach is to overcome the limitations inherent in traditional monolingual WSD systems, which are 

typically restricted to handling one language at a time and often fail to capture cross-linguistic semantic 

nuances. By leveraging recent breakthroughs in deep learning and cross-lingual transfer learning. Our proposed 

integrated multilingual transformer neural network (IMTNN) aims to provide a more robust and versatile 

solution for WSD in multilingual contexts. It integrates contextualized word embedding’s derived from pre-

trained multilingual models with a fine-tuned Transformer architecture. To evaluate the efficacy of our proposed 

system, we conducted extensive experiments on standard WSD benchmarks, with respect to Collocation score 

and F1-Score encompassing a variety of languages and domains. The results of these evaluations demonstrated 

significant improvements over traditional WSD methods as well as existing state-of-the-art models. Our blended 

multi-linguistic system not only achieved higher accuracy in disambiguating word senses but also exhibited 

remarkable robustness across different languages, including those that were previously unseen during the 

training phase. This robustness is particularly noteworthy in zero-shot scenarios, where the system effectively 

disambiguates word senses in languages that were not part of the training dataset, highlighting the model's 

ability to generalize and adapt to new linguistic environments. 

The rest of the paper is organized in the following manner. Section 2 summarizes the related works. Section 3 

describes our proposed IMTNN model. Section 4 provides and analyzes the experimental results on the three 

benchmark datasets. Section 5 draws the conclusion about this work. 

II. RELATED WORKS 

A. Traditional Approaches 

Historically, WSD methods can be categorized into two main types: knowledge-based and supervised learning 

approaches. Knowledge-based methods, such as Lesk's algorithm, utilize dictionaries and thesauri to match the 

context of a word with its possible meanings (Lesk, 1986). These methods are straightforward but often lack the 

depth needed for nuanced disambiguation, especially in complex sentences. 

Supervised learning approaches emerged as a response to the limitations of knowledge-based methods. These 

techniques rely on annotated corpora to train classifiers that can predict the correct sense of a word based on its 

context. Early models included decision trees and support vector machines (SVMs), which provided 

improvements in accuracy but were limited by their reliance on handcrafted features (Mihalcea et al., 2004). 

B. Statistical Methods 

With the increase in available linguistic data, statistical methods gained prominence in WSD. These approaches, 

such as the use of co-occurrence statistics and distributional semantics, allowed for the automatic extraction of 

contextual information. The introduction of vector space models enabled the representation of words in a 

continuous vector space, facilitating better semantic similarity measures (Turney & Pantel, 2010). Despite their 

advancements, statistical methods often struggled with polysemy and required extensive feature engineering. 

C. Neural Network Approaches 

The landscape of WSD shifted dramatically with the introduction of neural networks. Early neural models 

focused on word embeddings, such as Word2Vec and GloVe, which captured semantic relationships through 

dense vector representations (Mikolov et al., 2013; Pennington et al., 2014). However, these models primarily 

addressed the word representation problem without directly tackling the disambiguation challenge. 

The advent of deep learning, particularly the Transformer architecture introduced by Vaswani et al. (2017), 

marked a significant advancement in WSD. Transformers utilize self-attention mechanisms to weigh the 

importance of different words in a sentence, allowing for a more nuanced understanding of context. Subsequent 

models, such as BERT (Bidirectional Encoder Representations from Transformers), further enhanced contextual 

embeddings by considering the entire sentence rather than fixed window sizes (Devlin et al., 2019). These 

models have demonstrated state-of-the-art performance in various NLP tasks, including WSD. 

D. Current Advancements 

Recent research has focused on improving WSD by incorporating multi-linguistic features and enhancing model 

interpretability. Liu et al. (2019) explored the integration of multilingual embeddings, demonstrating that 

leveraging semantic information from multiple languages can improve disambiguation accuracy. Additionally, 

multi-task learning frameworks have been proposed to jointly train models on related tasks, enhancing their 

ability to generalize across different contexts (Zhang & Yang, 2015). 
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A robust preprocessing pipeline is essential for developing a high-quality Word Sense Disambiguation (WSD) 

system. The most widely used sense inventories for WSD, such as WordNet (Miller, 1992) and BabelNet 

(Navigli and Ponzetto, 2012a; Navigli et al., 2021), define the possible meanings of a word based on its lemma 

and part of speech (PoS) tag. As a result, having a precise preprocessing pipeline is crucial to generating the 

correct set of potential word meanings. Improvements to the Lesk algorithm, along with the incorporation of 

semantic similarity measures and heuristic models, can further enhance the performance of WSD systems 

(MiuruAbeysiriwardana et al., 2024). 

In our work, we build upon these advancements by developing a blended multi-linguistic system that utilizes 

Transformer Neural Networks for WSD. By integrating diverse linguistic features, we aim to enhance the 

model's contextual understanding and improve its performance across various languages. This approach not only 

addresses the limitations of traditional methods but also leverages the strengths of contemporary deep learning 

techniques. 

III. PROPOSED MODEL 

A. Blended Multi-linguistic Transformer Neural Network: 

This Blended Multi-linguistic Transformer Neural Network (BMTNN) uses multilingual translation with 

supervised algorithm shown in Fig.1. The different corpora is used for translate given language into target 

language this will use transformer network to translate multiple language in parallel . The BMTNN uses pre 

trained dataset which is used as single model to transform multiple source language into to single target 

language. The BMTNN translation uses statistical property for context matching applied in the language 

translation for example, Good morning is a English phrase translate into some languages such as Hindi 

(शुभप्रभात), Telugu (శుభోదయం), Arabic (صباحالخير), Malay (selamat Pagi). As per the given example those 

language are sample multiple massive source language which is translated to target language as English by 

transforming into the targeted English language it uses the statistical property for context matching in translation 

process. In word sense disambiguation linear neural network is used for disambiguation. Word sense nothing but 

that word meaning of the word related to its context. There are ambiguation in finding the correct sense related 

to its content. Briefly describe as the word having the same sense but while using in the particular context IT 

modifies to different meaning as per the context so, the word sense disambiguation process of sensing the 

correct sense of the word related to the particular context.  

 BMTNN model, we provide transformer neural network for word sense disambiguation so that it provides 

faster retrieval of result using parallel mechanism i.e., sentence with multiple words is given parallelly to the 

transformer neural network model. It identifies meanings simultaneously. In this model classification is 

performed early to classify the words to its language then it is translated to English where the English language 

can easily be adopted to the pre-processing work so that is performed faster in upcoming word sense 

disambiguation process. 

 

 

 

 

 

 

 

 

 

Fig.1 - Architecture of BMTNN 

B. Components of the BMTNN Architecture: 

Input Sentence: The Input sentence are Fetched from the review dataset. The review dataset contain reviews 

about product in various language. The problem is here to find the Ambiguity and sense of the word in the 

review sentence. The finding of sense is estimated by the following process 
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Classification: At classification stage the reviews dataset are rearranged and classified under different language 

and validation category.  

Translation: The translation process is based on the blending of neural machine Translation with Transformers. 

The purpose of transformers in NMT is to help improve the accuracy and efficiency of machine translation by 

enabling the model to learn the contextual relationships between words in a sentence. The translation is key part 

in our WSD model, it helps to improve the accuracy score in the output based on the language category, so that 

we regarded this system as multi-linguistic system. The reason behind the blending of Neural machine 

Translation with transformers is based on following limitation in the traditional NMT. 

The traditional NMT such as recurrent neural networks (RNNs), have limitations in their ability to capture long-

range dependencies between words in a sentence. Transformers address this issue by using a self-attention 

mechanism that allows the model to focus on different parts of the input sequence when encoding and decoding. 

So, the purpose of transformers in NMT is to enable the model to learn the contextual relationships between 

words in a sentence, which can lead to more accurate and efficient machine translation 

Pre-Processing: The pre-processing step involves Stemming, chunking, parts-of-speech tagging, lemmatization 

etc. 

Linguistic Embedding: Linguistic embedding is a crucial component used to represent the input text as a 

sequence of vectors. These vectors capture the meaning and context of the words in the input text and are used 

as inputs to the self-attention mechanism in the transformer architecture. In the transformer architecture, the 

input text is first converted into a sequence of tokens, and each token is mapped to a high-dimensional vector 

using an embedding layer. The embedding layer is a trainable matrix that maps each token to a vector in the 

embedding space. The transformer model then processes the sequence of embedded tokens using a series of self-

attention layers, which allow the model to weigh the importance of each token based on its relevance to the 

other tokens in the sequence. The output of the self-attention layers is then passed through a series of 

feedforward layers, which produce the final output sequence. 

Feed forward propagation: Feed forward propagation in transformer neural networks is the process by which 

the model processes the output of the self-attention layers to produce the final output sequence. After the self-

attention mechanism is applied to the input sequence, the resulting sequence of vectors is passed through a 

feedforward neural network. The feedforward neural network in the transformer architecture consists of two 

layers, a fully connected layer followed by a non-linear activation function. The fully connected layer applies a 

linear transformation to the input sequence, and the non-linear activation function (typically a rectified linear 

unit, or ReLU) applies an element-wise non-linearity to the output of the linear layer.  

The feedforward layers in the transformer architecture operate independently on each position in the sequence, 

meaning that the same set of parameters is applied to each position in the sequence. This allows for efficient 

computation and parallelization of the feedforward layers. After passing through the feedforward layers, the 

resulting output sequence is added to the input sequence using a residual connection, and then normalized using 

layer normalization. This normalization step helps to stabilize the training process and improve the model's 

ability to generalize to new data. 

Multi-head attention: Multi-head attention is a key component of the transformer neural network architecture 

that allows the model to capture complex relationships between words in a sentence or document. Multi-head 

attention is a modification of the standard self-attention mechanism used in neural machine translation (NMT) 

models. In multi-head attention, the input sequence is transformed into multiple representations using different 

weight matrices. These multiple representations are then used to compute multiple sets of attention scores, each 

of which is used to compute a weighted sum of the values corresponding to the query sequence. The use of 

multiple attention heads allows the model to capture different types of relationships between the words in the 

input sequence, such as syntactic, semantic, and positional relationships. The output of the multiple attention 

heads is then concatenated and passed through a linear layer to produce the final output of the multi-head 

attention mechanism. This final output is then added to the input sequence using a residual connection, and 

normalized using layer normalization 

Masked multi-head attention: Masked multi-head attention is a modification of the multi-head attention 

mechanism used in transformer neural networks that allows the model to attend to only certain positions in the 

input sequence. The purpose of masked multi-head attention is to prevent the model from attending to positions 

that have not yet been generated during training, such as in auto-regressive language modeling or machine 

translation. The use of a mask in multi-head attention is particularly important in auto-regressive language 

modeling and machine translation, where the model generates the output sequence one token at a time. By only 

attending to positions that have already been generated, the model can accurately predict the next token in the 
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sequence without inadvertently "leaking" information about future tokens. Masked multi-head attention is a 

powerful modification to the standard multi-head attention mechanism used in transformer neural networks. By 

applying a mask to the attention scores, the model can attend to only certain positions in the input sequence, 

leading to improved accuracy and effectiveness for auto-regressive language modeling and machine translation 

tasks 

Linear: The linear layer is a basic building block of the transformer neural network architecture. It is a fully 

connected layer that applies a linear transformation to the input sequence, typically followed by a non-linear 

activation function such as the Rectified Linear Unit (ReLU). In the final output layer, the linear layer is used to 

map the output of the decoder to the target vocabulary space. This final linear layer is typically followed by a 

softmax activation function, which produces a probability distribution over the target vocabulary for each output 

position in the sequence. The linear layer is a fundamental building block of the transformer neural network 

architecture, allowing the model to capture complex patterns and relationships in the input sequence. By 

applying a linear transformation to the input sequence, followed by a non-linear activation function, the model 

can introduce non-linearity and capture complex patterns in the data, leading to improved accuracy and 

effectiveness for a wide range of NLP tasks. 

Activation function: Activation functions are an important component of the transformer neural network 

architecture, as they introduce non-linearity into the network and enable it to learn complex relationships 

between the input and output sequences. The softmax activation function is a commonly used activation 

function in neural networks, including the transformer neural network architecture. It is typically used in the 

final output layer of the network to produce a probability distribution over a set of discrete classes or categories. 

The softmax activation function is used in the final output layer of the decoder, where it produces a probability 

distribution over the target vocabulary for each output position in the sequence. The softmax function takes as 

input a vector of logits, which are normalized scores for each target word in the vocabulary, and outputs a 

probability distribution over the target vocabulary, such that the sum of the probabilities of all possible target 

words adds up to 1.  

Output: The accuracy of the correct sense of the word. The output of accuracy in a transformer neural network 

depends on the specific task and dataset being used. In general, accuracy is a common metric used to evaluate 

the performance of a transformer model on a given task. accuracy is typically measured by computing the 

percentage of correctly translated sentences in the test set. The accuracy can be computed by comparing the 

predicted translations produced by the model to the true translations in the test set, and counting the number of 

correctly translated sentences. 

C. Working Principle of BMTNN: 

In BMTNN model, we provide transformer neural network for word sense disambiguation so that it provides 

faster retrieval of result using parallel mechanism i.e., sentence with multiple words is given parallelly to the 

transformer neural network model. It identifies meanings simultaneously. In this model classification is 

performed early to classify the words to its language then it is translated to English where the English language 

can easily be adopted to the pre-processing work so that is performed faster in upcoming word sense 

disambiguation process. For example, “I will send moral for the story”. Here each word is given simultaneously 

to the hidden layers. 

The steps to find the senses are given below, 

Step 1: The user will give the sentence for getting the required result it can be taken as input. 

Step 2: The input is classified using corpora  

Step 3: The input is then translated to English if the given input is not in English  

Step 4: Then input is pre-processed, each token is given to the input layer 

Step 5: Number of hidden layers is created as equal to number of words in the given sentence. 

Step 6: In each hidden layer, transformer-based mechanism is used for multi-lingual language translation and 

sensing the correct result. 

Step 7: The highest probability rated sense formed by the activation function is matched as output and get 

displayed to the user. 

Below the steps are given in algorithm 
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INPUT: The sentence given in the context 

TARGET: Correct sense of the word  

INPUT LAYER 

1. Sentence S 

2. do classification  

3. if S is a review 

4. do the translation for S 

5. if S is English then 

6. gotostep 13 

7.        end 

8. else 

9. Translate S to English  

10. decode S to S’ 

11.        end 

12. for each word (w) of S’ and S 

HIDDEN LAYERS 

13. do Pre-processing 

14. Find the part of speech of every w and    set as linguistic input Li 

15. do linguistic embedding  

16.     Li gets its senses and its vector using positional   encoding P 

17.  

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤, 𝑙) =  
𝑤. 𝑙

‖𝑤‖‖𝑙‖
 

w and l are x and y points  

18. return Le = cos (w, l) as embedded value 

19. Le € P, positional matrix of a token in the S 

20. end 

21. for each Le   

22. do feedforward and back propagation  

23. Error estimation Ei = ∑ pi-ai 

using multi-head attention(n), n is number of attention head 

24. return Mw = Ei, a vector matrix with error estimated value 

25. do activation function for Mw  

26. 𝜎(𝑚⃗⃗ )=
𝑆𝐿𝑖

∑ 𝑆𝐿𝑜𝑛
𝑜=1

.Ei 

27. Where Le= Li 

28. return𝜎(𝑚⃗⃗ )=Aw
i, the activation rate of every senses 

OUTPUT LAYER 

29. return Ov = max (Aw
i), a output accuracy 

30. decode Ov to Target T  

31. end 

IV. FINDINGS AND ANALYSIS 

 

Collocation scores is a critical in the field of natural language processing (NLP), particularly in tasks such as 

Word Sense Disambiguation (WSD). The provided table.1outlines various approaches to WSD, highlighting 

different models, datasets, and collocation scores. 

In table.1 let’s consider the Supervised Approaches, BERT-WSD (Huang et al., 2019) achieves scores of 72.3 

and 70.4 on the SemEval datasets, utilizing WordNet and BabelNet corpora. ELMo-WSD (Peters et al., 2018) 
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Table 1 – Comparison of Different Approaches 

 

scores slightly lower but still notable, showing 71.0 and 71.3 on the SemEval datasets. IMS+emb (Raganato et 

al., 2017) uses SemCor and Senseval datasets, achieving scores similar to BERT-WSD. 

Then, we look in to the Unsupervised and Semi-Supervised Approaches, Context2Vec (Melamud et al., 2016) is 

an unsupervised model based on Wikipedia and Gigaword corpora, but it underperforms compared to supervised 

models, with scores of 65.0 and 66.2. GlossBERT (Huang et al., 2019), a semi-supervised model, performs 

competitively with supervised models (73.6 and 71.8). 

Our Proposed Multi-task Generative Approach, that standout in this list which leverages WordNet and scores an 

impressive 0.96 PMI (Pointwise Mutual Information) on the SemEval-15 and Amazon review datasets. 

The F1 score is another crucial metric in evaluating the performance of machine learning models, particularly in 

the context of classification tasks as shown in table.2. It is especially important when dealing with imbalanced 

datasets, where one class may significantly outnumber another. The F1 score combines precision and recall into 

a single metric, making it easier to compare different models effectively. In this detailed analysis, we will 

explore the F1 scores of various transformer models and discuss their implications in natural language 

processing (NLP) tasks. 

The F1 score is calculated using the formula: 

𝑭𝟏 = 𝟐 × 
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×  𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +  𝑹𝒆𝒄𝒂𝒍𝒍)
 

This formula emphasizes the balance between precision (the accuracy of positive predictions) and recall (the 

model's ability to find all relevant instances).  

A high F1 score indicates that a model has a good balance of precision and recall, which is especially critical in 

tasks like sentiment analysis, fraud detection, and other classification problems. It emphasizes the promise of 

multi-task generative models, The key differentiator in this approach is that it seems to combine multiple tasks 

into a unified framework, which might include not only WSD but also other generative tasks 

Approach Corpus System Datasets Collocation score 

Supervised 
WordNet, 

BabelNet 

BERT-WSD 

(Huang et al., 2019) 

SemEval-07, 

SemEval-13, 

SemEval-15 

72.3, 70.4 

Supervised English Gigaword 
ELMo-WSD 

(Peters et al., 2018) 

SemEval-07, 

SemEval-13 
71.0,71.3 

Supervised SemCor 
IMS+emb(Raganato 

et al.2017) 

Senseval-2, 

SemEval-15 
72.2,71.5 

Unsupervised 
Wikipedia, 

Gigaword 

Context2Vec 

(Melamud et al., 

2016) 

SemCor, Senseval-

2, Senseval-3 
65.0, 66.2 

Semi-Supervised BabelNet 
GlossBERT (Huang 

et al., 2019) 

SemEval-07, 

SemEval-15 
73.6, 71.8 

Supervised 
WordNet, 

Wikipedia corpus 

N.Rahman and 

B.Borah.2022 

Senseval-2, 

SemEval-15 
77.8,75.3 

Multi task 

generative 
WordNet 

BMTNN  

(Proposed Model) 

SemEval-

15/Amazon review 

set 

0.96(PMI) 
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The F1 score serves as a key performance indicator, particularly in scenarios where the cost of false positives 

and false negatives is significant. For example, in sentiment analysis, misclassifying a negative review as 

positive can lead to poor customer experiences. Similarly, in medical diagnosis, failing to identify a disease (low 

recall) can have serious consequences, while incorrectly labelling a healthy individual (low precision) can lead 

to unnecessary anxiety and interventions. 

Performance Evaluation: 

From the performance scores, it's evident as shown in table.3 that: 

• Supervised methods still perform better on most traditional benchmarks, especially when trained on 

large, annotated datasets like WordNet and SemCor. 

• The multi-task generative approach stands out in terms of Pointwise Mutual Information (PMI), which 

indicates a strong ability to predict the co-occurrence of words with their correct senses, making it 

valuable for tasks involving real-world datasets, such as Amazon reviews. 

To evaluate the performance of translation and word-sense disambiguation (WSD) outputs, various standardized 

scoring systems are employed. Each metric provides insight into different aspects of the systems’ performance. 

Translation evaluation measures how well a system converts text from one language to another, while WSD 

evaluates how accurately a system can determine the intended meaning of a word in context when that word has 

multiple possible meanings. In this detailed exploration, we will focus on several key metrics that assess both 

translation and WSD outputs: BLEU, ROUGE, METEOR, BERT Score, Accuracy, F1 Score, and Perplexity. 

The BLEU score for translation output is 0.85, which is quite high, indicating that the system generates 

translations that closely align with human references. For WSD, the BLEU score is lower at 0.73, reflecting the 

inherent difficulty in disambiguating word meanings and generating translations that fit contextually. A high 

BLEU score in translation suggests the model can accurately reproduce sentences that match human intuition.  

 

However, BLEU might not capture subtle errors related to meaning or fluency, particularly for WSD tasks. The 

discrepancy between the translation and WSD BLEU scores could point to challenges in dealing with 

polysemy—words with multiple meanings—where more contextual understanding is required. 

The ROUGE score for translation output in the document is 0.76, while for WSD output, it is 0.85. This 

indicates that the WSD output retains more relevant content from the reference when compared to the 

translation output. The relatively high ROUGE score for WSD suggests that even though the system might 

struggle with disambiguating word meanings (as indicated by the BLEU score), it still manages to capture 

significant contextual elements from the reference translations. ROUGE complements BLEU by focusing on 

recall rather than precision. A higher ROUGE score for WSD might indicate that, although the system's word 

choices may not be perfect (leading to a lower BLEU score), it effectively captures the context or gist of the 

text. This is particularly important for WSD, where capturing the meaning in context is crucial. 

The METEOR scores are 0.64 for translation output and 0.75 for WSD output. These scores suggest that while 

both systems convey meaning reasonably well, the WSD system performs better in terms of using correct word 

meanings and placing them in appropriate contexts. The higher METEOR score for WSD reflects that the 

system might struggle less with choosing the right sense of a word in context, even if the wordings vary slightly 

from the reference. METEOR is generally more sensitive to word choice and semantics, which is crucial for 

WSD tasks that require more nuanced understanding of language. 

Table.3– Performance Metrics for Translation and WSD 

Metric 
Translation Output Result 

(minimum viable score) 

WSD Output Result 

(minimum viable score) 

BLEU 0.85 0.73 

ROUGE 0.76 0.85 

METEOR 0.64 0.75 

BERT Score 0.93 0.93 

Accuracy 87% 87% 

F1 Score 0.96 0.96 

Perplexity 95 95 
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Both translation and WSD outputs have the same BERT Score of 0.93, indicating that both systems are highly 

effective in capturing the semantic content of the reference translations. A high BERT Score suggests that even 

when the exact wording or phrase structure of the output differs from the reference, the system still conveys the 

correct meaning. This is particularly important for WSD, where capturing the intended meaning of ambiguous 

words in context is the primary goal. 

Accuracy is simply the number of correct outputs divided by the total number of predictions made. This metric 

is easy to interpret but may oversimplify performance, especially in tasks where partial correctness or gradations 

of meaning are important. It reports an accuracy of 87% for both translation and WSD outputs. This means that 

in both tasks, 87% of the time, the systems are producing correct or acceptable translations/disambiguations 

according to the references. While an accuracy of 87% is solid, it’s important to note that this metric alone 

doesn’t capture nuances such as fluency, semantic accuracy, or partial correctness. For WSD, a high accuracy 

score suggests the system is frequently choosing the correct sense of the word in context. 

Perplexity is the exponentiation of the entropy of a distribution. Lower perplexity means the model is more 

confident in its predictions, while higher perplexity suggests greater uncertainty. Both translation and WSD 

outputs have a perplexity of 95. This suggests that while the systems are reasonably confident in their 

predictions, there is still room for improvement in reducing uncertainty. Perplexity is an important indicator of 

how uncertain the system is about its outputs. In WSD, high perplexity might indicate difficulties in 

disambiguating certain words, especially those with multiple closely related meanings. 

The performance of translation and WSD systems can be effectively measured using a range of standardized 

metrics. Each metric offers a different perspective: BLEU focuses on n-gram precision, ROUGE emphasizes 

recall, METEOR incorporates synonym and stemming matches, BERT Score captures semantic similarity, while 

Accuracy, F1 Score, and Perplexity provide broader insights into the overall correctness and confidence of the 

system.  

For translation, high BLEU, ROUGE, and BERT Scores indicate that the system performs well in generating 

coherent and accurate translations, but metrics like Perplexity and METEOR suggest that there are areas of 

uncertainty or room for improvement in terms of handling more complex or ambiguous text. For WSD, the 

relatively lower BLEU score points to the difficulty of choosing the right sense of words, but strong 

performance in BERT Score, ROUGE, and METEOR indicates that the system still captures much of the correct 

meaning in context. 

Ultimately, combining these metrics allows a more nuanced understanding of the strengths and weaknesses of 

both translation and WSD systems. No single metric can fully capture the complexities of language tasks, but 

together they provide a comprehensive framework for performance evaluation. 

IV. CONCLUSION 

The BMTNN model combines transformer neural networks with contextualized word embeddings from pre-

trained multilingual models to disambiguate word meanings across different languages. This system addresses 

the complexity of multilingual word sense disambiguation by leveraging cross-lingual transfer learning and 

improving the accuracy of disambiguation in languages not seen during training, including in zero-shot 

scenarios. The proposed approach significantly improves upon traditional WSD methods and state-of-the-art 

techniques by offering better generalization, interpretability, and robustness.Future research should focus on 

optimizing computational efficiency, expanding language coverage, enhancing real-time capabilities, and 

improving model interpretability.  

The success of the BMTNN relies heavily on large annotated corpora like WordNet and BabelNet. For many 

languages, especially low-resource languages, such large annotated datasets may not exist, limiting the model’s 

applicability in these cases. The model’s performance in these languages could be improved by exploring 

unsupervised or semi-supervised learning techniques that rely on less annotation. 

Pre-trained multilingual models often inherit biases present in the datasets used to train them. As a result, the 

BMTNN might exhibit biases when dealing with certain languages or dialects, potentially leading to inaccurate 

disambiguation in specific cultural or linguistic contexts. Efforts to mitigate bias through fairness-aware model 

design or more diverse training data could be explored in future work. 
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