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ABSTRACT 

Earthquakes are one of the natural phenomena which have incessantly caused break and loss of human life in olden 

times. Earthquake prediction is an important aspect of any society's plans and can boost public preparedness and 

decrease damage to a great extent. Due to the stochastic character of earthquakes and the challenge of achieving an 

efficient and dependable model for earthquake prediction, efforts have been insufficient thus far, and new methods 

are required to solve this problem. This paper proposes a novel prediction method based on attention mechanism 

using Deep learning which can predict the number and maximum magnitude of earthquakes in each area of the 

region. This model focuses on effective earthquake characteristics and produces more accurate predictions. Firstly, 

pre-processing on earthquake data set is applied. Secondly, to effectively use spatial information and reduce 

dimensions of input data, the deep learning algorithm is used to capture the spatial dependencies between earthquake 

data. Thirdly, RNN is employed to capture the temporal dependencies. Fourthly, the Attention Mechanism layer is 

introduced to highlight its important features to achieve better prediction performance. The results show that the 

proposed method has better performance and generalize ability than other prediction methods. 

1. Introduction  

Earthquakes are one of the most devastating natural disasters in the world, which occur without an explicit warning 

and may cause serious injuries or loss of human lives. One of effective solutions for reducing earthquakes loss is the 

earth quake prediction, which aims to use the known earthquake data to specify three elements, namely when, where 

and the magnitude of the future earthquake. Therefore, effective earthquake prediction can reduce the earthquake 

damage to a large extent, which is of great significance to the country and society, and there has been an increasing 

interest and academic research on predicting seismic events. 

In summary, the contributions of this paper can be summa rized as follows: • We argue that the feature extraction 

methods used in previous earthquake prediction methods obtain explicit features by geologists and implicit features 

by deep learning methods individually, and lack a general model that can combine the advantages of both explicit 

features and implicit features. • Wepropose anovel deep learning model named DLEP for earthquake prediction. In 

DLEP, the explicit features and implicit features are combined effectively by a suggested attention-based strategy. 

Furthermore, a dynamic loss function is also designed for dealing with the category imbalance problem of seismic 

data. • We evaluate the effectiveness of our model DLEP com paring to state-of-the-art baselines, and the 

experimental results on eight datasets with different characteristics demonstrate the promising performance of the 

proposed DLEP, which indicates that the idea of fusing both ex plicit features and implicit features is an effective 

solution for accurate earthquake prediction. 

2. Related work  

In the last few decades, many researchers regarded earth quake prediction as a purely geological and physical 

problem. They tried to discover more effective features and earthquake precursors to predict the future earthquake 

with the development of physics and geology . For example, Zhang et al [1] recently proposed a precursory pattern-

based feature extraction method for earthquake prediction, where the eight mathematical statistic features can be 

generated as seismic indicators (i.e. the time, mean magnitude, seismic root of seismic energy, b-value, mean square 

deviation, maximum difference, and coefficient of variation). Compared with dif ferent models, their experimental 

results on two historical earthquake records demonstrated the effectiveness of their precursory pattern based features 

with the selected CART algorithm for earth quake prediction. Unfortunately, the performance of these methods is 

usually limited by the characteristics of seismic zones. For example, the work in [2] predicted the earthquake events 

in Chile with the magnitude larger than 4.4, while the work in [3] only adopted two zones in China. For other 
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seismic data with differ ent properties, previous methods often need some adjustment or even modify the prediction 

algorithm. To sum up, these seismic indicators (explicit features) designed by humans have strong interpretability 

from the theoretical system. However, they may fail to fully utilize information contained in seismic sequences. For 

this purpose, people hope to discover the plentiful features hiding in seismic data. 

 Dataset  

In this paper, we adopt eight popular seismic zones with different characteristics as our datasets to test the 

performance of the comparison algorithms.Specifically, the eight zones are Sichuan Province,Xinjiang Province, 

Qinghai- Tibetv plateau,Shandong- Jiangsu Province,Japan, the Philippines,Chicagoand LosAngeles. Table I gives 

the main characteristics of eight seismic datasets, including the number of instances,corresponding longitude and 

latitude of different regions,belonged countries,the range of earthquake categories and the number of instances in 

each category.For each dataset, we manually divide the magnitude range into five labels. It is noted that the dividing 

threshold for each label is slightly different for each dataset,with the aim to get the balanced number of instances for 

each label. Basedon this,we can regard the prediction of earthquake magnitude range as a classification problem[4]. 

Table 1: Characteristic of eight seismic datasets 

 

3. Methodology  

Fig. 1 gives the general framework of the proposed DLEP, which consists of four steps: data preprocessing, feature 

ex traction, feature fusion and prediction. In the first step of data preprocessing, we use the proposed segment 

method introduced in Section II-A to extract precursory patterns and training samples. In the second step of feature 

extraction, we adopt the eight mathematical statistics-based earthquake indicators [5] based on the obtained 

precursory patterns as the explicit feature vector, denoted as EF. The eight indicators are the time, mean magnitude, 

seismic root of seismic energy, b-value, mean square deviation, maximum difference, and coefficient of variation. In 

addition, we use CNN to extract implicit vector based on the obtained samples, denoted as IF. In the third step of 

feature fusion, we suggest an attention based strategy in Section III-B by using the parameter matrices U and V to 

weight the EF and IF respectively. Then, the fusion vector will be input into the full-connected layer to get the 

output. During the training phase, the category imbalance problem caused by data distribution tends to cause the 

model to converge to the local minimum, which is solved by the dynamic loss function proposed in Section III-C. 

Finally, the model outputs the magnitude range of main shock. More specifically, previous experiments have proved 

that the ReLU activation function is effective in the CNN, and the softmax is often adopted in the fully-connected 

layer as the activation function, thus we choose them in our model. To enhance the generalization performance of 
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our model, similar to the work in [6], we also adopt dropout layer and batch normalization layer in our model.

 

 

Fig 1. Architectural diagram 

The input block contains the earthquake information in the per month, which are preprocessed through ZOH 

technique. The ZOH technique helps to reduce the  effect of data’s zero-value on the network training process and 

improve prediction performance. The feature extraction block is obtained by a one-dimensional CNN with nine 

layers, including four convolutional layers, four pooling layers, and one flatten layer. The filter size is wide selected 

in the first convolution layer of convolution, unlike the subsequent layers. When compared to small kernels, this 

structure is superior at damping high-frequency signals. Stacking several convolutional and pooling layers allows 

higher-level features to be extracted from the input, which helps represent the input data better. The Maxpooling 

layer is implemented after each convolution layer to reduce the dimensions and parameters within the network. In 

the feature extraction block, rectified linear unit (ReLU) is used as the activation function to avoid gradient 

vanishing or explosion problems while enhancing the convergence rate. Following each convolution layer, a batch 

normalization (BN) algorithm is employed as an effective regularization strategy. In addition to having a 

regularizing effect, it can reduce the shift of internal covariate, better the network’s training performance, and 

increase the generalization capability of the network. BN is a feature normalization method in a layer-bylayer 

manner that is applied to accelerate the speed of the training process. Features in each layer are first normalized to 

the standard distribution and are then regulated to the ideal distributions. 
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4.  Experiments   

In this paper, mainland China has been chosen as the region of interest, situated in the southeast of the Eurasian 

plate. Mainland China is linked to the Siberia-Mongolia sub-plate, Philippine, and India plate; it is regarded as one 

of the most seismically active regions in the world.  These earthquakes caused the death of more than 270,000 

people, accounting for 54% of the overall death toll from natural catastrophes in mainland China. Therefore, reliable 

and effective predictions in this area can help to reduce the damage and casualties caused by earthquakes. One of the 

aims of the earthquake prediction problem is to predict and identify regions where major earthquakes occur. In order 

to analyze and more accurately predict the range of location of the next earthquake, mainland China is divided into 

several smaller regions. However, the lack of enough and appropriate data makes earthquake prediction and model 

training in small areas challenging. The study area was divided into nine small areas to address this challenge. The 

latitude range from 23 to 45 degrees, and the longitude range from 75 to 119 degrees; the  

range of latitude and longitude is divided into three equal parts.  
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Fig. 9. The comparison of proposed model and deep learning models for maximum magnitude prediction in region 1 

 

The proposed method is compared with CNN-BiLSTM, LSTM, CNN, RF, MLP, DT, and SVM to verify the 

efficiency, superiority, and generalization ability. Table III shows the results of the proposed method and 

comparison methods in predicting the number of earthquakes for nine different regions. It is clear from the outcomes 

that the proposed method consistently achieves the best prediction performance in all regions, with the lowest 

RMSE and MAE values and the highest R2 score. This shows that the proposed method is appropriately performed 

in predicting the number of earthquakes and its superior or competitive to other comparison methods. For example, 

in region 1, the other comparative models present high prediction errors, while the proposed model improvements 

prediction results with the RMSE value 0.24, the MAE value 0.018, and R2 value 0.956. 

 

5. Conclusions  

Due to the nonlinearity and complexity nature of earthquakes data, this paper provides a new CNN-BiLSTM-AM 

approach and a novel and efficient general framework for earthquake prediction in terms of number and maximum 

magnitude. The number and maximum magnitude of earthquakes that occurred in each month over the past 50 years 

are considered the model’s input features, which makes the model can completely extract useful information from 

the historical data. A new data processing technique called ZOH is presented to better train the network and lessen 

the prediction difficulty. After data preprocessing, CNN is used to extract spatial characteristics. The features 

extracted by CNN are passed into BiLSTM. The BiLSTM is introduced to solve the data’s long-term dependency, 

and the AM is used to highlight 

the BiLSTM output features that have a high contribution  to the prediction results. Finally, the output of the AM is  

sent to the fully connected layers to obtain the final result. Compared to other shallow machine learning and deep 

learning approaches, the simulation results in two case studies reveal that the proposed method has the best 

performance. 
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