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ABSTRACT

The rapid development of brain-computer interface technology, alongside the growth of the IoT,
has favoured new domains of human-machine interactions in health, rehabilitation, and assistive
technologies. However, many of the classical BCI systems face issues while dealing with
performance, latency, and scalability issues. To deal with the aforementioned, the paper proposes
to bring together deep learning and edge computing to support BCI control in IoT smart systems.
The paper aims to reduce latency and improve performance and usability in BCls. Deep learning
algorithms for efficient signal classification include convolutional neural networks without edge
computing, and sensor-to-sensor processing happens as close to the object being controlled as
possible in real-time, which means less dependence on remote cloud servers. Combining these two
technologies into one approach optimizes BCI-controlled interactions with IoT devices such as
prosthetics and exoskeletons. The results revealed that the proposed model demonstrated an
improvement over traditional methods based on several key metrics: accuracy (96%), latency (90
ms), throughput (90 signals/sec), and power consumption (50 W). With this model, the latency
reduced with this integrated edge computing will improve energy efficiency, making it suitable for
real-time efficient applications. Therefore, the integration of deep learning with edge computing
in BClIs shows high value for upgrading health care, rehabilitation, and assistive technologies.
Finding novel ways to be more efficient and scalable concerning actual IoT applications completes
the picture of an integrated system for more personalized, responsive, and precise control over BCI
systems.

Keywords: Brain-Computer Interface (BCI), Deep Learning, Edge Computing, Internet of Things
(IoT), Signal Classification, Neural Signal Processing, Real-Time Control, Prosthetics,
Exoskeletons, Latency Reduction, Power Efficiency, Smart [oT Systems

1. INTRODUCTION

The fast pace of development in Brain-Computer Interface (BCI) technologies, coupled with the
expansion of Internet of Things (IoT) systems, has created new avenues in human-machine
interaction. BCIs facilitate direct brain-to-device communication, providing revolutionary
potential for use in healthcare, rehabilitation, and assistive technology applications. Kartsch et al.
(2019) present BioWolf, a power-effective BCI platform based on a low-power system-on-chip,
RISC-V cores, and Bluetooth, with high information transfer at low power through canonical
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correlation analysis. With the increasing need for smooth and efficient BCI systems, their
integration of sophisticated methods such as deep learning and edge computing has become critical
to boost the performance, precision, and usability of BCIs. When combined, these technologies
open the doors to intelligent, intuitive, and responsive IoT device control.

Deep learning methods have been very effective at decoding complex brain signals, providing
enhanced signal classification, pattern discovery, and general BCI performance. With the use of
deep learning algorithms, BCIs can decode brain activity with improved accuracy, allowing for
real-time device control. Nagel and Spiiler (2019) report a deep learning-based approach for EEG-
based decoding of sensory information with high information transfer in passive mode and possible
constraints in non-invasive visual BCI performance. This advancement increases the feasibility of
BCls for real-world application in dynamic environments. In addition, continuous improvement
of BCI performance with machine learning means that these interfaces can learn to customize
themselves to individuals' neural patterns over time and thus offer personalized control and
improved user experience

At the same time, edge computing is also essential to lower latency, which is a key performance
indicator for BCI-based systems demanding rapid responses. Lotte et al. (2018) survey EEG-based
BCI classification algorithms, emphasizing adaptive classifiers, transfer learning, and Riemannian
geometry approaches, pointing out the slow progress of deep learning and providing
recommendations for improving EEG classification. Through local processing of data on edge
devices, instead of delegating it to remote cloud servers, edge computing facilitates quicker data
analysis and decision-making, and thus real-time interaction. Within BCls, edge computing can be
utilized to provide real-time, seamless control of IoT devices, e.g., prosthetics, exoskeletons, and
assistive technologies, with reduced latency that might interfere with performance.

This article discusses the synergy among neural-driven smart [oT systems, deep learning, and edge
computing to further advance the control of BCIs. Menon et al. (2019) suggest a humanoid
assistive system for paralyzed patients based on SDN, employing edge computing for real-time
control and enhanced flexibility of the exoskeleton, showing efficient rehabilitation through EEG-
based control. Through the discussion of existing research and applications, it enlightens us on the
possibility of these combined technologies to revolutionize BCI design, enhancing assistive
devices, and providing new avenues for healthcare, rehabilitation, and accessibility, thereby
leading to the development of human-centred smart systems.

Key Objectives

» Understand how deep learning integrates with edge computing to synergize BCI control
using smart [oT systems.

» Implement advanced neural signal processing algorithms to reduce latency in real-time
control of the devices.
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» Investigate the effects of edge computing in optimizing BCI interactions with IoT devices
such as prosthetics and exoskeletons.

» Examine the combination of DNN and edge-computing techniques to implement
personalized and energy-efficient control over BCls in a range of applications.

» They will create new opportunities to improve BCI reliability, usability, and performance
in healthcare, rehabilitation, and assistive technologies.

Volume 8, Issue 4, 2020

Zhang et al. (2019) address the issues and development in Brain-Computer Interfaces (BCls),
particularly on the analysis of brain signals and how they are translated into device commands.
Although BClIs have been highly promising, the paper points out serious flaws in the design and
operation of these systems, especially when deep learning methods are used to process signals.
Even with much improvement in the field, signal variability, real-time processing, and scalability
remain ubiquitous challenges. This paper proposes to overcome these hurdles by delving into some
of the recent advancements in brain signal analysis and pinpointing the directions for the
development of future deep learning-based BCI.

Rajesh et al. (2019) identified a Brain-to-Brain Interface (BBI) for communication between
caregivers and stroke patients. Although the combination of EEG headsets and light encryption
algorithms, like NTSA, facilitates communication via thought signals, there is no research on the
scalability of the system, especially in multi-user settings. Besides, although the system proves to
be effective in secure communication, more research is necessary into the optimization of the
encryption algorithm, real-time performance, and extending the ability of the system to effectively
accommodate various neurological conditions and environments.

2. LITERATURE SURVEY

Bansal and Mahajan (2019) discuss EEG-based Brain-Computer Interfaces (BCls) primarily for
cognitive analysis and control applications. It explores in detail the techniques of analyzing
purposeful eye-blinking data using time and frequency domain analysis. The methods include
ERP, scalp mapping, and sub-band power analysis to get EEG data across different scenarios.
Further, they also describe how to create an intuitive real-time system for command with multiple
algorithms interfacing with MATLAB for interactive EEG signal acquisition and control.

Kadiyala (2019) introduced a hybrid model that enhances fog computing performance by reducing
latency and improving resource allocation. By integrating DBSCAN, Fuzzy C-Means, and ABC-
DE optimization, the study addresses challenges in managing unstructured IoT data securely. The
proposed approach ensures efficient data exchange, optimizes bandwidth, and strengthens
security, outperforming conventional methods. This model provides a scalable and reliable
solution for IoT-fog computing environments, improving overall system efficiency and data
protection.

Boyapati (2019) explores how Cloud IoT-driven digital financial inclusion can bridge the income
gap between urban and rural areas. By utilizing Explainable Al and statistical methods, the study
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analyzes income equality indicators across different regions. The findings show that integrating
advanced analytics significantly reduces economic disparities, promoting financial accessibility.
This research highlights the role of Cloud IoT in fostering inclusive financial policies and
supporting fair economic growth.

Volume 8, Issue 4, 2020

According to Narla (2019), cloud computing and Al are revolutionizing healthcare by enabling
real-time disease prediction using loT data. Traditional models often struggle with balancing
accuracy and efficiency, leading to the development of an optimized ACO-LSTM framework. This
model refines LSTM parameters using Ant Colony Optimization, improving predictive
capabilities and reducing processing time. With enhanced sensitivity and specificity, it ensures
precise and timely disease detection, supporting better patient care and scalable healthcare
monitoring

Natarajan (2018) explores how cloud computing, artificial intelligence, and IoT are transforming
healthcare by enabling real-time disease diagnosis. Traditional methods struggle with the vast and
complex data from IoT devices, requiring optimized solutions. By integrating Radial Basis
Function Networks, Genetic Algorithms, and Particle Swarm Optimization, the proposed model
enhances accuracy and processing speed. This hybrid approach improves real-time healthcare
monitoring, ensuring precise disease detection and making medical data analysis more efficient
and reliable.

Yalla (2019) examines the integration of loT smart computing with big data, hashgraph, and cloud
computing within the Kinetic methodology to enhance data management and security. loT smart
computing enables real-time data collection and processing, while cloud computing ensures
scalable and efficient resource utilization. Hashgraph technology enhances security and consensus
mechanisms, improving decision-making and operational efficiency. This approach addresses key
challenges like interoperability, scalability, and regulatory compliance, making data-driven
insights more accessible and reliable

Mahajan and Bansal (2017) examine cognitive neuroscience as a means to enhance Brain-
Computer Interfaces for interactive control applications. The paper talks about converting
intentional eye blinks, captured via EEG sensor, into commands. The EEG signals were filtered
according to power spectral features, that is, peak data to identify the instances of eye-blink. There
is a significant increase in event-related potentials observed in the frontal lobes. The model was
implemented on Arduino using Simulink, which validates using EEG-based BCls for rehabilitation
of physically challenged patients.

Pais Roldan (2019) questions the basic ideas around the coma and incorporates the issue of why
some patients recover while in a coma and others remain untouched. Using a rat model of the
brainstem coma, the recovery of brain function following a coma was investigated using fMRI.
The study has identified a network encompassing the basal forebrain, basal ganglia, and thalamus
wherein it contributed to cortical reactivation. The study also puts forth the challenges of fMRI
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research in small animals while also proposing a multimodal platform based on fMRI and
pupillometry for monitoring arousal.

Volume 8, Issue 4, 2020

Schwemmer et al. (2018) propose a new deep neural network decoding framework for Brain-
Computer Interface (BCI) systems to further the goals of accuracy, response time, and
multifunctionality. Using intracortical data collected from a tetraplegic participant, the decoder
revealed a high level of accuracy, sustained performance over one year without retraining, a faster
response than existing methods, and improved functionality with minimal retraining through
transfer learning. The controller allowed the direct and real-time control of a paralyzed forearm
using functional electrical stimulation, providing a huge step forward for BCI clinical applications.

Bose et al. (2019) discuss how BCIs have turned fiction into reality, enabling prosthetic
developments for hearing aids and, more importantly, prosthetic limbs for paralyzed individuals.
BCIs may allow the visualization of brain activity and the future sharing of experiences. This
chapter explores the signal acquisition, processing, and subsequent translation of the signals into
commands for output device activity enhanced by using modern algorithms, such as deep learning,
to improve BCI performance.

Abiri et al. (2017) introduce a new Brain-Computer Interface (BCI) platform for controlling a
user's own social robot via noninvasive EEG signals. The system reads out imagined body
movement to compute the user's desired velocity from a regression model. This kinematic data is
employed to guide the robot's gestures. The platform can be combined with neurofeedback to
upgrade cognitive abilities, providing potential neurorehabilitation applications, especially for
dementia patients.

Obeidat et al. (2017) examine the performance of a mobile Brain-Computer Interface (BCI) based
on the edges paradigm for spelling words, deployed on small screens in a rolling wheelchair. The
experiment compares the mobile edges paradigm with the row-column paradigm and finds that the
edges paradigm retains its benefits in accuracy, bitrate, and user experience. Yet, the decrease in
adjacent errors was restricted to horizontal errors, demonstrating the effect of smartphone visual
design limitations on neurocognitive processes.

3. METHODOLOGY

The methodology of the study aims at improving the Brain-Computer Interface (BCI) controller
in smart [oT systems using deep learning and edge computing technologies. Leveraging
advanced neural signal processing algorithms and real-time data processing builds confidence
for the reduction of latency. The study features EEG signal capturing by EEG headsets,
processing of data using deep learning models, and edge computing for reduced latency. The
study shall aim to optimize the BCI-controlled interactions with IoT devices such as prosthetics
and exoskeletons. The fusion of deep learning and edge computing is essential for providing
personalized, responsive, and efficient BCI control to various real-world applications.
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Data set: This study looks at the identification of discriminative EEG features with classification
techniques to categorize brainwave patterns for mental state recognition that can aid human-
machine interaction. The Muse headband equipped with four EEG sensors was used to classify
the three mental states: relaxing, neutral, and concentrating. The dataset was developed from
multiple individuals concerned with various feature selection algorithms and classifiers while
achieving high accuracy on a reduced feature set.

Data Collection
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Figure 1: Architecture Flow for Brain-Computer Interface Control Using Deep Learning
and Edge Computing

Figure 1 displays the architecture flow of a brain-computer interface (BCI) system enhanced by
Deep Learning and Edge Computing. The beginning of the process is data collection; here, EEG
signals are acquired online. Then, the whole data undergoes many preprocessing techniques:
filtering, noise removal, and normalization. After successful data preprocessing, the
corresponding information is extracted using feature extraction techniques, extracting relevant
curves like power spectral density and frequency bands, among others. Then those signals are
classed into classes through deep learning techniques (CNNs) to improve accuracy. Edge
computing reduces latency by allowing data processing locally. Finally, performance assessment
could be correlated in terms of key parameters, such as accuracy, latency, and energy efficiency.

3.1 Signal Acquisition and Preprocessing
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EEG signals are collected using non-invasive headsets and capture the neural activity. The
collected signals undergo preprocessing for use in further analysis, creating a clean and reliable
dataset in the process. The preprocessing usually consists of band-pass filtering to keep brain
wave frequencies of interest and normalization for standardizing the measured values. The
conditioned data are then utilized to extract the features responsible for BCI control; the most
commonly analyzed features include power spectral density, event-related potentials (ERP), or
frequency bands (alpha, beta).

Band-pass Filter (using Butterworth filter):

5?2 +2{wns+w3

242 wes+w?

H(s) = (1)

where s is the complex frequency, { is the damping ratio, w,, is the natural frequency, and w, is
the cutoff frequency.

Normalization:

X—u

Xnorm = p (2)

where X is the original signal, u is the mean, and ¢ is the standard deviation.
3.2 Deep Learning for Signal Processing

Deep learning algorithms, notably Convolutional Neural Networks, are experts at EEG signal
analysis and classification into patterns associated with classical pairs of brain states. These
models can learn about complex neural patterns by fitting large datasets of labelled brain activity
into precise commands. Such obstacle-defining models can enhance the ability of the brain
interfaces to respond to real-time reflectivity in brain signals. The high accuracy of the deep
learning model with quick response times will be particularly beneficial for real-time
applications in brain-computer interfaces. Convolutional Layer (for feature extraction):

Feature map =W * X + b 4)

where W is the filter (weight), X is the input signal, * denotes convolution, and b is the bias.
Activation Function (ReLU):

f(x) = max(0, x) ®))

where x is the output of the convolution operation. Softmax Function (for classification):

J

Zk
PO=KIX) =502 (6)

where zj, is the output from the final layer for the class k, and the sum is over all classes j.
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Figure 2. Deep Learning-Based Brain-Computer Interface (BCI) Workflow

Figure 2 is an overview of the workflow of a Deep Learning-based Brain-Computer Interface
(BCI) system. First, the acquisition of the data is done using EEG signals. These signals are
preprocessed to remove noise and provide better data. The feature extraction process identifies
the characteristic features of the brainwaves. During the Training phase, deep learning models,
such as Convolutional Neural Networks (CNNs), are trained using the extracted features to
recognize those patterns. Online Classification will classify the real-time EEG data in a
streaming manner, where the model is making the decision. Finally, Control Feedback
communicates the results to control the devices or actions.

3.3 Edge Computing for Low-Latency Processing

Edge computing allows the EEG data to be analyzed locally, making it less dependent on
distance-separated cloud servers. The neural signals can, therefore, be analyzed without much
delay, leading to faster decision-making. The computing power is spread over devices at the
edges of the network, such as loT-enabled prosthetics or exoskeletons, with a promise of low
latency, which is critical for real-time control. Local processing thus increases responsiveness
while also ensuring that any sensitive data are not transferred over the network, enhancing
privacy and decreasing bandwidth use. Latency Calculation:

Latency _ Processing Time (7)

Data Transfer Time

where the processing time is the time taken by the edge device to process the data and the data
transfer time is the time to send data to a cloud server.

Algorithm 1: Real-Time Brain-Computer Interface (BCI) Signal Processing and Device
Control

Input:

raw signal: The EEG signal is obtained from the Brain-Computer Interface (BCI).

Filter Params: Parameters for the band-pass filter to remove noise from the raw signal.

Deep Learning Model: The pre-trained deep learning model is used to classify brain signal
patterns.
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Output:
Control Command: The command generated based on the classified brain signal (e.g., "move
Left", "move Right", "no Action").

Apply preprocessing to clean and normalize the raw EEG signal
filtered signal = preprocess (raw signal, filter Params)

Use a deep learning model to classify the filtered signal
Classified Signal = classify Signal (filtered signal, deep learning model)

Determine the appropriate control action based on the classified signal

if classified Signal == "move Left":
control Command = "move Left"

else if classified Signal == "move Right":
control Command = "move Right"

else if classified Signal == "no-action":
control command = "no Action"

else

_n

control command = "unknown signal"
Return the determined control command
return control command

end

Algorithm 1: The brain signals collected from the BCI and processes them into optimizing the
control of [oT devices. The raw Signal (EEG data) is generally subjected to preprocessing where
a filter is employed to get rid of the noise and artifacts. Following this preprocessing stage, the
filtered Signal will be forwarded to the deep Learning Model (like CNN) for classifying it into
some categories, say, move left, move right, or no action. And so based on the classification,
then, the algorithm will know the corresponding control Command. When no identifiable signal
is received, an unknown Signal is returned. Finally, the control command is returned to trigger
the specified device.

3.7 Performance Metrics

The performance metrics herein are crucial as they provide a numerical means to gauge the
effectiveness of and the efficacy of the application being proposed for enhancing BCI control in
smart [oT systems. A host of methods, going from deep learning models to edge computing and
EEG signal preprocessing methods, are evaluated through metrics such as accuracy, latency,
throughput, and power consumption. The merit of any method from a combination approach can
be seen in the context of improvements the integrated advanced technologies have brought us.
The table outlines each method's metrics and the proposed combined model.

153



L ) ISSN 2347-3657
. International Journal of

Information Technology & Computer Engineering
: Volume 8, Issue 4, 2020

Table 1. Performance Comparison of Methods and Proposed Model for BCI Control in
Smart loT Systems

Metric Deep Learning Edge EEG Signal Proposed
Model Computing Preprocessing Model:
Combined Deep
Learning and
Edge
Computing
Accuracy (%) 92 88 84 96
Latency (ms) 350 120 280 90
Throughput 45 80 55 90
(signals/s)
Power 55 32 45 50
Consumption
(W)

Table 1 provides a concise comparison between different methods with the proposed model
offering Brain-Computer Interface (BCI) control in smart [oT systems. Key performance metrics
evaluation: Accuracy, Latency, Throughput, and Power Consumption, of Method 1 (Deep
Learning Model), Method 2 (Edge Computing), Method 3 (EEG Signal Preprocessing), and
Proposed Model (Combined Deep Learning and Edge Computing) shows that the Proposed
Model outperforms every other model across each metric with a clear advantage of higher
accuracy, lower latency, and more efficient throughput and power consumption, thus making it
highly suitable for application to real-time, energy-efficient BCI in 10T systems.

4. RESULT AND DISCUSSION

The performance comparison among the Proposed Model integrating Deep Learning and Edge
Computing for BCI systems shows a marked advantage in relevant measures. The Proposed
Models secure an accuracy of up to 96%, favoring deep learning and edge computing, with
respective performances of 92% and 88%. The latency is set at 90 ms in real-time control as
opposed to 350 ms for deep learning only. The throughput is enhanced to 90 signals/s, and power
usage is adjusted to 0.50 W, balance. Hence, the performance is such that the integration of deep
learning with edge computing improves BCI control, thereby making it suitable for real-time
and energy-efficient applications in IoT systems.

Table 2. Comparison of Methods and Proposed Model for Brain-Computer Interface
(BCI) Control with Edge Computing and Deep Learning

Metric Hosseini et Khan et al. Qian et al. Bablani et Proposed
al. (2017) - (2019) - (2019) - al. (2019) - Model:
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Deep Edge Cloud-Edge Brain- Combined
Learning Computing | Computing Computer Deep
with Edge for IoT with DL- Interface Learning
Computing DFCM Survey and Edge
Computing
Accuracy (%) 85 90 87 83 96
Latency 150 120 130 160 90
(ms)
Throughput 50 65 55 60 90
(signals/s)
Power 60 45 50 55 50
Consumption
W)
Data 80 60 70 90 50
Processing
Speed (ms)
Energy 75 80 78 76 88
Efficiency
(o)

Table 2 outlines the performances of four different ways of using Brain-Computer Interface
(BCI), thereby comparing it with one's performance on Accuracy, Latency, Throughput, Power
Consumption, Data Processing Speed, and more through Energy Efficiency. The proposed
Model mixes Deep Learning and Edge Computing and has outperformed all single methods
concerning these key metrics. The proposed model outweighs the others, particularly in
accuracy, latency, and high efficiency, making it a good fit for so-called real-time IoT
applications in BCI systems.

155



?{Internatinnal Journal of

Information Technology & Computer Engineering

180
160
140
120
100
80
60
40
20

points

o

Method 1:  Method 2: Khan Method 3: Qian
Hosseini et al. etal. (2019)- etal. (2019) -
(2017) - Deep Edge Cloud-Edge

Learning with Computing for Computing with

Computer

ISSN 2347-3657

Edge [oT DL-DFCM Interface Survey
Computing
configuration
® Accuracy (%) m Latency
(ms) Throughput (signals/s)

® Power Consumption (W)

® Energy Efficiency (%)

® Data Processing Speed (ms)

Volume 8, Issue 4, 2020

Method 4:
Bablani et al.
(2019) - Brain- Combined Deep

Learning and

Proposed
Model:

Edge

Computing

Figure 3. Comparison of BCI Methods and Proposed Model Performance Across Key

Metrics

Figure 3 compares the performance of four different methods for BCI systems and also the

Proposed Model in which deep learning with edge computing is integrated. This chart examines
five parameters: Accuracy (%), Latency (ms), Throughput (signals/s), Power Consumption (W),
and Data processing speed (ms). The proposed Model outperforms others in all aspects, notably
Accuracy and Energy Efficiency, but also Lower Latency and Higher Throughput. This graph
serves as a suitable representation of the advantages of the combined approaches of deep learning
and edge computing in better optimization of real-time BCI systems in IoT environments.

Table 3. Ablation Study: Performance Comparison of BCI Methods with Different

Component Combinations

Metric Deep Edge Signal Deep Edge
Learni | Comput | Preproces | Learnin | Computin
ng ing sing g+ g + Signal
Edge | Preproces
Comput sing
ing

Signal
Preproces
sing +
Deep
Learning

Full
Model:
Deep
Learning
+ Edge
Computin
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g + Signal
Preproces
sing
Accuracy | 85.0 88.0 84.0 92.0 90.0 89.0 96.0
(o)
Latency | 150.0 120.0 140.0 100.0 130.0 120.0 90.0
(ms)
Throughp | 50.0 65.0 55.0 80.0 70.0 75.0 90.0
ut
(signals/s
)
Power 60 45 50 50 55 52 50
Consump
tion (W)
Data 80.0 60.0 70.0 55.0 65.0 60.0 50.0
Processin
g Speed
(ms)
Energy 75.0 80.0 78.0 85.0 82.0 80.0 88.0
Efficienc
y (%)

Table 3 shows performance comparisons made by various combinations of Deep Learning, Edge
Computing, and Signal Preprocessor operation in Brain-Computer Interface (BCI) systems.
Some of the metrics used to assess the performance of each configuration include: Accuracy,
Latency, Throughput, Power Consumption, Data Processing Speed, and Energy Efficiency.
Moreover, these ALs showed comparative performance: Deep Learning + Edge Computing,
Edge Computing + Signal Preprocessing, and Full Model, with each component included. The
Full Model shows slightly better performance than any other configurations, proving the
advantage of integrating these various technologies for BCI performance enhancement in real-
time conditions within the context of IoT applications.
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Figure 4. Performance Comparison of BCI Methods with Different Component
Combinations

Figure 4 refers to the output performance of different combinations of Deep Learning, Edge
Computing, and Signal Preprocessing for Brain-Computer Interface systems. Other than
showing different configurations: single methods; combinations of methods such as Deep
Learning + Edge Computing, Edge Computing + Signal Preprocessing, Signal Preprocessing +
Deep Learning, and the Complete Model (all combined), it is also a reflection of the metrics
observed: Accuracy, Latency, Throughput, Power Consumption, Data Processing Speed, and
Energy Efficiency. From the available data, it becomes clear that no combination of methods has
equalled the task performance of the Complete Model across all metrics. These results show that
the integration of all components has far better performance for BCI systems in [oT than the case
with individual layers.

5. CONCLUSION AND FUTURE ENHANCEMENT

The integration of Deep Learning and Edge Computing with active feedback controls proved
significantly advantageous to the key performance measures in Brain-Computer Interface (BCI)
systems. The proposed Model gained an accuracy of 96% with a latency of 90 ms, throughput of
90 signals/s, and power inputs of 50 W. These results provide evidence for the improved BCI
control made possible by a fusion of deep learning and edge computing, suitable for real-time and

158



L ) ISSN 2347-3657
. International Journal of

Information Technology & Computer Engineering
Volume 8, Issue 4, 2020

energy-efficient applications in IoT systems. Future work may focus on optimizing such aspects

as power consumption, scalability for multi-user systems, and security methods for encrypted
communications in BCI systems. Also, a wider range of adaptability of the model to different
neurological conditions would increase its applicability for health care and rehabilitation.
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