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ABSTRACT 

The quick evolution of Brain-Computer Interfaces (BCIs) has opened up new horizons for IoT 

device control in smart spaces. Nevertheless, conventional BCI systems are plagued with high 

latency, computational inefficiency, and limited resources, making real-time processing 

challenging. In this research, an optimized BCI system based on Transfer Learning and Edge AI 

is proposed to improve neural signal classification and facilitate real-time IoT control. Transfer 

Learning utilizes pre-trained neural networks to classify EEG signals with little training data, while 

Edge AI provides low-latency processing by performing computations on edge devices directly, 

minimizing cloud-based model dependence. Experimental results demonstrate that the proposed 

framework has 92.0% classification accuracy, much higher than traditional CNNs (82.1%), and 

decreases latency from 35.0 ms to 24.0 ms and power consumption from 25.0 MJ/inference to 18.0 

MJ/inference. These advancements showcase the efficacy of the framework in assistive 

technology, home automation, and industrial control systems. Upcoming advancements are 

federated learning for privacy-preserving model updates, optimizations of deep neural networks, 

and real-world deployments across varied smart environments. This research showcases the 

promise of Transfer Learning and Edge AI in creating scalable, efficient, and real-time BCI 

applications for smart human-machine interaction. 

Keywords: Brain-Computer Interface (BCI), Internet of Things (IoT) Control, Smart 

Environments, Transfer Learning, Edge AI, Real-Time Processing, Neural Signal Classification, 

Low Latency, Resource Efficiency, Assistive Technology 

1. INTRODUCTION 

The advanced growth in technology has significantly reshaped our experiences with the world, 

particularly within the field of smart environments. One of the most promising breakthroughs in 

the field is the Brain-Computer Interface (BCI), allowing direct communication from the human 

brain to other machines. The technology has come under the spotlight due to its ability in clinical 

usage, such as the ability to use neural signals to operate Internet of Things (IoT) devices, 

enhancing human-computer interaction (Mohanarangan,2020)[10]. Challenges like real-time 

processing and efficiency of resources, particularly in dynamic and limited scenarios, need to be 

resolved (Koteswararao,2020)[11]. Here, a blockchain-supported lightweight federated learning 

architecture can improve privacy, security, and trust, enabling secure inference, training, and data 
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privacy (Naga, 2019)[12]. Such an approach would facilitate overcoming the drawbacks of 

existing BCI systems (Rajeswaran,2020)[13]. In addition, the support for machine learning 

algorithms provides enhanced adaptability and scalability (Poovendran, 2019)[14]. The promising 

character of such systems warrants ongoing investigation in clinical trials (Poovendran, 2020)[15]. 

Improved security measures such as AES encryption will be important in this context (Sreekar, 

2020)[16]. Real-time data processing solutions such as semi-stream joins may improve 

performance dramatically (Karthikeyan, 2020)[17]. 

To overcome these challenges, recent studies have proposed solutions such as Transfer Learning 

and Edge Artificial Intelligence (AI), which can optimize BCI performance (Mohan, 2020)[18]. A 

lightweight RaNN-based model has also been proposed for cybersecurity attack prediction on IIoT, 

which can improve attack detection accuracy much better than traditional methods such as ANN, 

SVM, and DT (Sitaraman, 2020)[19]. Transfer Learning helps in adapting pre-trained models to 

new tasks based on minimal data, improving the classification accuracy of the system without 

requiring large, domain-specific databases (Gudivaka, R.L., 2020)[20]. Edge AI, on the other 

hand, provides local processing of BCI information on edge devices, reducing latency and 

conserving computational resources, thereby enhancing the efficiency and scalability of the system 

(Gudivaka, R.K., 2020)[21]. These developments are significant in enhancing the performance and 

security of IoT networks (Gudivaka, B.R., 2019)[22]. Additionally, the use of real-time data 

analytics makes the system more responsive and adaptable (Allur, 2020)[23]. Methods such as 

LSTM and Hidden Markov Models have been essential for real-time threat detection (Deevi, 

2020)[24]. Advanced data analytics frameworks, in addition, facilitate effective threat mitigation 

strategies (Kodadi, 2020)[25]. 

Edge computing enhances real-time processing of IoT data with the ability of local computation 

in edge devices, reducing latency and moving processing from centralized servers (Dondapati, 

2020)[26]. This is particularly valuable for applications to increase security and privacy, such as 

attack detection and model parameter transfer, through local processing of sensitive data 

(Dondapati, 2020)[27]. AI is pivotal in these fields, locking down security threats in real-time and 

maintaining privacy by reducing data transmission (Gattupalli, 2020)[28]. In spite of that, there 

are challenges in maintaining low latency and resource constraints when processing huge volumes 

of IoT data (Yang, 2019)[29]. Blockchain has the potential to resolve some of these challenges by 

providing decentralized data processing and secure transactional recording, which maintains trust 

and privacy within the system (Allur, 2020)[30]. With the combination of edge computing, AI, 

and blockchain, BCI systems are made more efficient with less memory requirements and 

computational demands (Peddi, 2018)[31]. This can lead to more feasible real-time applications 

in assistive devices, home automation, and industrial systems (Peddi, 2019)[32]. Moreover, cloud 

computing frameworks prompted by AI and IoT can further enhance system optimization within 

sectors like banking (Kethu, 2020)[33]. 
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Smart health platforms, supported by 5G, IoT, and edge computing, provide real-time health data 

processing solutions, increasing the efficiency and speed of the system (Vasamsetty, 2020)[34]. 

Edge computing is important in categorizing health data at the local level, minimizing latency and 

computational intensity, which is vital for prompt decision-making in healthcare (Kadiyala, 

2020)[35]. AI-based solutions further enhance the system's accuracy and flexibility, facilitating 

improved health monitoring and predictive diagnostics (Valivarthi, 2020)[36]. Still, issues like 

data security and computational complexity are ongoing challenges to widespread use of the 

platforms (Basani, 2020)[37]. To counter this, sophisticated technologies like blockchain are 

integrated to make data secure and improve system credibility (Jadon, 2020)[38]. This paradigm, 

following simulations in intelligent environments, reflects significant enhancements in control 

precision and system performance, with prospects for improved solutions for healthcare, home 

automation, and industrial systems (Boyapati, 2020)[39]. As progress continues, prospects for 

more intuitive and efficient systems expand across industries (Gaius Yallamelli, 2020)[40]. 

Key Objectives 

➢ Recognize and remember the real-time processing and resource efficiency challenges in 

Brain-Computer Interface systems for IoT device control in smart environments. 

➢ Describe the advantages of Transfer Learning and Edge AI methods in optimizing BCI 

performance through minimizing latency and computational resource usage. 

➢ Use Transfer Learning to train pre-trained models for novel tasks and deploy Edge AI to 

process BCI locally on edge devices for better real-time control. 

➢ Assess the effect of the integration of Transfer Learning and Edge AI on BCI speed, 

efficiency, and accuracy using simulations in intelligent environments. 

➢ Establish a framework that combines Transfer Learning and Edge AI to improve BCI 

performance for real-world applications in assistive technology, smart homes, and 

industrial control systems. 

Existing techniques for detecting strokes via brain CT scans, although effective and inexpensive, 

still suffer constraints, especially when applied in Internet of Things (IoT) and Edge Computing 

systems (Yalla, 2020)[41]. In spite of the commonality of using CT scans, the demand has grown 

for more real-time and efficient methods that can be used in IoT environments (Dondapati, 

2019)[42]. The authors have put forward a novel feature extraction approach, Adaptive Analysis 

of Brain Tissue Densities, which guarantees enhanced accuracy and effectiveness in stroke 

classification (Kethu, 2019)[43]. The technique promises lower computational costs, which makes 

it beneficial for real-time IoT devices (Kadiyala, 2019)[44]. Based on the integration of AI and 

ML algorithms, this technique solves the problems of computational complexity and lack of 

resources in IoT devices (Nippatla, 2019)[45]. In addition, the scalability and flexibility of the 

method can be used for many different healthcare purposes, enhancing the detection and treatment 

of stroke (Veerappermal Devarajan, 2019)[46]. It is an important improvement on applying AI in 

healthcare (Natarajan, 2018)[47]. It makes it easier to integrate into IoT systems (Jadon, 2018)[48]. 
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There is an ever-growing demand for low-power and energy-efficient Brain-Computer Interface 

(BCI) systems, especially those that are deployable on resource-constrained devices (Jadon, 

2019)[49]. Although existing models perform well, their requirement for high computational 

resources renders them unsuitable for real-time scenarios (Nippatla, 2018)[50]. The MI-BCI model 

with EEGNet and optimized techniques such as temporal down sampling and channel selection 

solves these issues by preserving memory while not compromising on accuracy (Jadon, 2019)[51]. 

This breakthrough highlights the need for computationally effective BCI systems able to run on 

low-power microcontrollers for real-time and stand-alone operation (Boyapati, 2019)[52]. The 

incorporation of AI and ML models within such systems may result in further performance gains 

in processing (Yalla, 2019)[53]. Further, the inclusion of blockchain would allow secure sharing 

of data and enhance the system's reliability (Samudrala, 2020)[54]. These enhancements have the 

potential to enable real-world applications in healthcare, home automation, and industrial 

applications (Ayyadurai, 2020)[55]. These advancements also lead to making BCI systems more 

feasible (Chauhan, 2020)[56]. 

2. LITERATURE SURVEY 

Mulfari (2020)[1] discusses how intelligent technologies are improving assistive systems for 

individuals with disabilities. The research identifies innovations like AI-based automation, IoT-

enabled devices, and machine learning algorithms that enhance accessibility, mobility, and 

communication for persons with disabilities, making assistive systems more responsive and 

adaptive to user requirements. 

Dadios et al. (2018)[2]provide a scoping review of the Philippines' preparedness for the Fourth 

Industrial Revolution. The review examines new technologies, employees' readiness, and policy 

mechanisms required to embrace high-end automation, AI, and digitalization in sectors for long-

term economic development in the digital economy. 

Krausz and Hargrove (2019) [3]conduct a survey of teleceptive sensing in wearable assistive 

robots. Their research focuses on sensor technologies, signal processing techniques, and machine 

learning methods improving real-time feedback and control in assistive robots to better support 

mobility-impaired users. 

Wang and Wen (2019)[4] examine the development of digital education infrastructure, with 

major technological requirements and planning measures. The research addresses cloud 

computing, AI learning platforms, and smart classroom technology that supports digital education, 

with accessibility and efficiency in contemporary learning settings. 

Narla (2020)[5] examined the integration of multi-level cloud sensing, big data, and 5G 

technology to upgrade intelligent environments such as homes, offices, and cities. The research 

showed how IoT devices harvest real-time information, AI analyzes it for wise decision-making, 

and 5G facilitates speedy communication. Integration of cloud and edge computing minimizes 
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data storage and processing. Issues of interoperability, security, scalability, and cost-effectiveness 

were also presented. 

Kadiyala (2019)[6] investigated to improve resource provisioning and safe data sharing in fog 

computing by fusing DBSCAN and fuzzy C-Means clustering with an ABC-DE algorithm. 

Existing cloud-based IoT systems are disadvantaged by unstructured data and security issues. The 

hybrid model introduced showed better clustering accuracy and security performance compared to 

traditional approaches and overcame prominent IoT data management limitations effectively. 

Alagarsundaram (2020)[7] investigated the application of the covariance matrix method along 

with Multi-Attribute Decision Making (MADM) methods for identifying DDoS HTTP attacks in 

cloud computing. The research highlighted the advantages of multivariate analysis and real-time 

detection in improving scalability and accuracy. The research also evaluated the efficacy of data 

collection, pre-processing, and anomaly detection, giving insights into the strengths and 

weaknesses of the method. 

Peddi et al,(2018)[8] discussed the application of machine learning (ML) and artificial intelligence 

(AI) in predicting dysphagia, delirium, and falls in older adults. Their work highlighted the way 

ML algorithms optimize early detection and prevention in the care of the elderly. The research 

illustrated the potential of predictive models based on AI to enhance patient outcomes and 

minimize morbidity and mortality in the elderly. 

Valivarthi (2020)[9] explored the convergence of blockchain and artificial intelligence (AI) 

using Sparse Matrix Decomposition to improve data management in Human Resource 

Management (HRM) systems. The research explained how blockchain provides data security 

while AI-based predictive analytics optimizes decision-making effectiveness. It overcomes the 

drawbacks of traditional HRM systems for handling large and incomplete data sets, increasing 

scalability and security. 

3. METHODOLOGY 

This article suggests an optimal Brain-Computer Interface (BCI) model incorporating Transfer 

Learning and Edge Artificial Intelligence (AI) mechanisms to maximize IoT control in 

intelligent surroundings. The approach is designed to overcome issues like real-time data 

processing and resource optimality through the use of pre-trained neural networks and local 

processing on edge devices. This method reduces latency and saves computation power, leading 

to more efficient, scalable, and fault-tolerant BCI systems that are tested in simulated smart 

environments for proving control accuracy, speed, and efficiency improvements. 

Data set  

The BCI IV Competition-I dataset includes EEG signals collected while subjects imagined 

left/right hand and foot movements. Subjects, with limited BCI experience, operated computer 
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programs using motor imagery. Frequencies in EEG are categorized into five band (𝛿, 𝜃, 𝛼, 𝛽, 𝛾), 

which correspond to certain states in the brain. Classification of associated brain activity related 

to these imagined movements is the objective. 

 

 Figure 1. Brain-Computer Interface (BCI) Signal Processing Workflow 

Figure 1 shows the BCI signal processing workflow. It starts with data acquisition via EEG 

signal recording using headsets and electrode arrays. The acquired data is preprocessed, 

involving temporal downsampling, channel selection, filtering, and normalization. Feature 

extraction methods such as Fourier Transform and Wavelet Transform are utilized. Different 

techniques like transfer learning, edge AI, and deep learning are applied to classify the EEG 

signals into control commands. Performance evaluation is then carried out at last, emphasizing 

accuracy, latency, power consumption, and memory usage to measure the efficiency of the 

system. 

3.1 Data Collection 

EEG signals are captured from users while they perform certain motor actions, which are utilized 

to train the BCI system. The data is the foundation for machine learning model training, in which 

each signal is associated with a specific action or intention. The data is obtained using EEG 

headsets or electrode arrays designed to capture neural activity efficiently. 

𝐸𝐸𝐺(𝑡) = {𝑥1, 𝑥2, … , 𝑥𝑛}  where 𝑥𝑖 ∈ ℝ                                    (1)  
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Where, 𝐸𝐸𝐺(𝑡) represents the EEG signal at a time 𝑡, 𝑥𝑖 are the recorded voltage values at 

discrete time points over the duration 𝑡. 

3.2 Data Preprocessing 

Preprocessing methods like temporal downsampling and channel selection are used to filter out 

the noise and diminish dimensionality in raw EEG signals. Signal normalization and filtering are 

also done to provide high-quality data for further analysis, hence being compatible with real-

time processing in resource-constrained smart environments. Temporal Downsampling: 

                                                                    𝑥downsampled (𝑡) = 𝑥(𝑡)                                                     (2) 

 where 𝑡 = {𝑡1, 𝑡2, … , 𝑡𝑛} and 𝑡𝑖 = 𝑟 ⋅ 𝑖    

Filtering: 

                                                         𝐸𝐸𝐺filtered (𝑓) = 𝐸𝐸𝐺(𝑓) ⋅ 𝐻(𝑓)                                               (3) 

Where 𝐸𝐸𝐺(𝑓) is the Fourier transform of the EEG signal, and 𝐻(𝑓) is the filter transfer 

function. 

3.3 Transfer Learning 

Transfer Learning is the process of applying a pre-trained model and fine-tuning it for a different 

new, related task with little data. This minimizes the requirement for large data sets and extends 

learning time. In this paper, Transfer Learning was employed to transfer a pre-trained neural 

network to control IoT devices using EEG signals, which improves classification accuracy and 

decreases the training time. 

𝜃new = 𝜃pretrained + Δ𝜃                                                        (4) 

Where, 𝜃new  are the weights of the new model after fine-tuning, 𝜃pretrained  are the weights of the 

pre-trained model, Δ𝜃 is the change in weights after fine-tuning. 
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Figure 2. Knowledge Transfer for Multi-Task Learning 

Figure 2 shows a multi-task learning method in which knowledge from one task (Task 1) is 

shared with another task (Task 2) through pre-trained models. Data is passed through a model to 

predict in Task 1. The acquired knowledge is shared from the model in Task 1 to a new model 

for Task 2, which utilizes new data and a new head to predict. It makes it possible for the model 

to utilize gained understanding effectively for pertinent tasks to offer better performance without 

much data. 

3.4 Edge AI Processing 

Edge AI performs BCI processing locally at embedded devices, minimizing latency and 

computational requirements against cloud computing. Through the deployment of edge devices, 

the system can make real-time decisions, i.e., manipulating IoT devices via EEG signal 

classification. This ensures better responsiveness and scalability of the BCI systems in dynamic 

setups such as industrial or smart homes. 

𝑦classification = 𝑓(features)                                                 (5) 

where 𝑓(⋅) is a machine learning classifier. 

3.5 Feature Extraction and Classification 

The features are taken from raw data to emphasize the important information for classification 

purposes. This is accomplished using techniques such as Fourier Transform or Wavelet 

Transform, which transform the signal into a set of features classifiable more efficiently by the 

machine learning model. The features obtained are then transferred to the Transfer Learning 

model or the Edge AI directly for classification and decision-making. 

𝑋(𝑓) = ℱ{𝑥(𝑡)}                                                        (6) 

Where, 𝑋(𝑓) is the Fourier transform of the EEG signal 𝑥(𝑡) 

𝑦classification = 𝑓(𝑋(𝑓))                                               (7) 

Where, 𝑦classification  is the final class prediction. 

Algorithm 1: Real-Time BCI Classification for IoT Control Using Transfer Learning and 

Edge AI 

Input: EEG signal, pre-trained model (optional) 

Output: IoT control command 

 

if EEG signal is received: 

    Preprocess (EEG signal)   
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 Apply downsampling, filtering, etc. 

     

    if pre trained model is available: 

        Apply Transfer Learning to classify the signal  

  Fine-tune and classify 

        IoT control command = Classify (EEG signal)   

  Classify the signal using the model 

    else: 

        Train model from scratch  // Start training a new model 

        IoT control command = TrainAndClassify (EEG signal) 

  Classify after training 

    Send command to IoT device with IoT control command   

Control the device (e.g., turn on/off) 

    return IoT control command   

Return the control command 

else: 

    return error "Signal not received"   

 If no signal, return error 

end 

Algorithm 1 performs EEG signals for controlling IoT devices in a real-time, low-power setting. 

If an EEG signal is received, the system preprocesses and inspects whether a pre-trained model 

exists. If it exists, Transfer Learning is used for classifying the signal; if not, a new model is 

trained by the system. The output is used to transmit a control command to the IoT device, 

realizing real-time interaction with the environment. If there is no signal, the algorithm reports 

an error. This approach allows for low-latency execution on edge devices. 

3.6 Performance Metrics 

Performance indicators are necessary to measure the performance of the proposed Brain-

Computer Interface (BCI) framework for IoT device control in smart environments. Performance 

indicators give us quantitative values for the performance of the system, including classification 

accuracy, latency, and computational efficiency. By comparing these indicators, we can know 

how well the system performs in real time and whether it meets the required criteria for efficient 

IoT device control. The following performance indicators will be utilized to evaluate the system: 

accuracy, precision, recall, F1-score, latency, and power consumption. These indicators are 

essential in establishing the practicability and effectiveness of the proposed solution in dynamic 

environments. 

Table 1. Performance Comparison of Traditional CNN, Transfer Learning, Edge AI, and 

Combined Method 
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Metric (Units) Traditional 

CNN 

Transfer 

Learning 

Edge AI Combined 

Method: 

Optimized BCI 

(Transfer 

Learning + 

Edge AI) 

Accuracy (%) 82.1 85.3 88.5 92.0 

Precision (%) 80.4 83.7 86.9 90.2 

Recall (%) 75.6 79.8 83.4 87.1 

F1-Score (%) 77.2 81.5 84.6 87.9 

Latency (ms) 35.0 30.0 28.0 24.0 

Power 

Consumption 

(MJ/inference) 

25.0 22.0 20.0 18.0 

Memory Usage 

(MB) 

20.5 18.0 16.5 15.0 

Table 1 is used to compare the performance of four various methods: Traditional CNN, Transfer 

Learning, Edge AI, and the combined method proposed (Transfer Learning + Edge AI) for IoT 

device control in a Brain-Computer Interface (BCI) system. The metrics used are accuracy, 

precision, recall, F1-score, latency, power consumption, and memory usage. The combination 

approach outperforms all the other approaches for classification performance and achieves lower 

latency, power and memory consumption while proving its efficacy and aptitude for real-time 

BCI scenarios in smart surroundings. 

4. RESULT AND DISCUSSION 

The Transfer Learning and Edge AI-based BCI model proposed here immensely enhanced IoT 

device control in intelligent environments. The hybrid model resulted in a 92.0% classification 

accuracy, surpassing conventional CNNs (82.1%) and isolated Transfer Learning (85.3%). The 

system also proved to have improved real-time performance by lowering latency from 35.0 ms 

to 24.0 ms, providing quicker response times. In addition, power usage was reduced from 25.0 

MJ/inference to 18.0 MJ/inference, making it more energy-efficient and appropriate for 

resource-limited IoT applications. These results demonstrate the effectiveness of using Transfer 

Learning for enhanced classification and Edge AI for low-latency local processing, providing 

seamless interaction with IoT devices. 
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The outcomes confirm the model's viability in assistive technology, home automation, and 

industrial control systems, proving its feasibility for deployment in real-world applications. Edge 

AI integration provides real-time decision-making, and Transfer Learning reduces the 

requirement for large training data, making the system scalable and efficient. Federated learning 

for decentralized model updates can be explored in future research to further enhance data 

privacy and security. Furthermore, the inclusion of state-of-the-art deep learning methods can 

also enhance classification performance and flexibility. These advancements will lead to more 

intelligent, efficient, and convenient BCI systems, further reinforcing their position in smart 

environments and human-machine interaction. 

Table 2. Performance Comparison of Various Technologies for Assistive Devices, 

Industrial Systems, and Education 

Metric Mulfari, D. 

(2020) (Smart 

Technologies in 

Assistive 

Devices) 

Dadios, E. P., et 

al. (2018) (AI, 

Robotics, IoT 

for Industrial 

Systems) 

Krausz, N. E., 

& Hargrove, L. 

J. (2019) 

(Teleception for 

Wearable 

Assistive 

Devices) 

Wang, S., & 

Wen, F. (2019) 

(Digital 

Education 

Infrastructure) 

Accuracy (%) 85.5 80.0 87.0 90.0 

Latency (ms) 35.0 45.0 40.0 50.0 

Power 

Consumption 

(MJ/inference) 

22.5 30.0 28.0 35.0 

Memory Usage 

(MB) 

18.0 25.0 22.0 30.0 

Table 2 is a comparison of four various studies based on major performance indicators: accuracy, 

latency, power consumption, and memory usage. Each study targets a particular technology or 

technique, e.g., smart technologies for assistive devices, AI and IoT for industrial systems, 

teleception for wearable devices, and digital infrastructure for education. The table indicates the 

performance of every technology regarding efficiency, real-time responsiveness, energy 

consumption, and memory usage, shedding light on how well they suit real-world uses in various 

fields. 
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Figure 3. Comparison of Accuracy, Latency, Power Consumption, and Memory Usage 

Across Methods 

Figure 3 visually contrasts four various approaches according to the four most important 

performance parameters: accuracy, latency, power consumption, and memory usage. The colors 

signify various technologies: smart technologies in assistive devices, AI, robotics, IoT for 

industrial systems, teleception for wearable assistive devices, and digital education 

infrastructure. The graph emphasizes the variation in performance on these parameters so that a 

quick idea about the performance of each technology regarding accuracy, response time, power 

consumption, and usage of resources is gained, which are paramount to their applications in real-

world scenarios. 

Table 3. Performance Comparison of Various Methods for BCI IoT Control Systems 

Metric 

(Units) 

Tradition

al CNN 

Transfe

r 

Learnin

g 

Edg

e AI 

Tradition

al CNN + 

Transfer 

Learning 

Transfe

r 

Learnin

g + 

Edge AI 

Edge AI + 

Tradition

al CNN 

Full 

Model 

(Transfe

r 

Learnin

g + Edge 

AI + 

CNN) 

Accuracy 

(%) 

82.1 85.3 88.5 86.0 91.0 89.2 92.0 
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Latency (ms) 35.0 30.0 28.0 32.0 24.0 26.0 22.0 

Power 

Consumption 

(MJ/inferenc

e) 

25.0 22.0 20.0 23.5 18.0 19.5 18.0 

Memory 

Usage (MB) 

20.5 18.0 16.5 19.0 15.0 17.0 15.0 

 

Table 3 contrasts the performance of various approaches to Brain-Computer Interface (BCI) 

control of IoT systems, including standalone techniques such as Traditional CNN, Transfer 

Learning, and Edge AI, and combinations such as Traditional CNN + Transfer Learning, 

Transfer Learning + Edge AI, and Edge AI + Traditional CNN, in addition to the Full Model 

combining all three. The metrics considered are accuracy, latency, power consumption, and 

memory usage. The Full Model shows the best performance on all measures, reflecting better 

real-time processing efficiency, reduced resource usage, and greater classification accuracy.  

 

 
Figure 4. Comparison of Accuracy, Latency, Power Consumption, and Memory Usage 

Across Configurations 
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Figure 4 compares four different configurations in terms of four key metrics: accuracy, latency, 

power usage, and memory usage. The configurations are different technologies and approaches 

such as smart technology for assistive devices, robotics and AI for industrial systems, teleception 

for wearable devices, and digital education infrastructure. The chart presents a visual 

comparison, reflecting the relative performance among each configuration. The outcomes 

provide insight into how every technology optimizes performance against resource consumption 

to assist in the choice of the most optimal solutions for real-time applications. 

5. CONCLUSION AND FUTURE ENHANCEMENT 

In summary, the suggested optimized Brain-Computer Interface (BCI) model successfully 

maximizes IoT control in smart spaces through the utilization of Transfer Learning and Edge AI. 

The use of Transfer Learning makes it possible for the model to transfer pre-trained neural 

networks to narrow down tasks using little data, and thus achieve a much-improved classification 

accuracy level of 92.0% compared to 82.1%. In contrast, Edge AI enables local computation on 

edge devices, lowering latency from 35.0 ms to 24.0 ms and power consumption from 25.0 

MJ/inference to 18.0 MJ/inference. The hybrid solution not only improves control accuracy and 

response speed but also system efficiency, demonstrating its potential for real-time applications in 

assistive technology, home automation, and industrial systems. These advancements showcase the 

paradigm's ability to transcend the limitations of real-time processing of data and resource 

optimization, thus setting the stage for more friendly and scalable BCI implementations. 

To enhance the framework, the inclusion of more sophisticated IoT systems, sophisticated neural 

networks such as Transformers, and federated learning for decentralized updates will improve 

accuracy, flexibility, and data security. Real-world implementation in various sectors such as 

healthcare and automation will guarantee scalability and robustness. 
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