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Abstract 

Financial fraud detection continues to be an important challenge as a result of changing fraud schemes and high-

dimensional transactional information. This work introduces TransSecure, a Transformer-based anomaly model 

with self-supervised learning incorporated for financial fraud detection. The model employs a Masked Transaction 

Model (MTM) for pretraining with masked financial data to enhance its capacity to detect fraudulent activities. 

Self-attention mechanisms allow for the identification of short-term and long-term fraud patterns by modeling 

intricate dependencies in transaction sequences. The approach is tested on a large-scale Fraudulent Transactions 

Dataset with 99.31% accuracy, 99.54% precision, 98.08% recall, and an AUC-ROC of 0.9934. Experimental 

results show that TransSecure effectively minimizes false positives and negatives compared to conventional 

machine learning and deep learning models. This research demonstrates the power of self-supervised 

Transformers in detecting financial fraud and offers insights into actual fraud prevention methods. 

Keywords: Transformer, Anomaly Detection, Self-Supervised Learning, Financial Fraud Detection, Masked 

Transaction Model, AUC-ROC, Deep Learning 

1. Introduction 

1.1. Background & Motivation 

Financial fraud has emerged as a major issue with increasing digital transactions growing exponentially. Global 

fraud losses in digital banking have risen, affecting financial institutions and consumers [1]. Conventional rule-

based fraud detection systems cannot keep pace with changing fraud patterns [2]. Machine learning-based 

methods have enhanced fraud detection but are plagued by high false positives and need large labeled datasets 

[3]. 

Recent developments in self-supervised learning have brought new opportunities for fraud detection by utilizing 

unstructured data [4]. Self-supervised approaches enable models to discover patterns from unlabeled transactional 

data, lowering the dependency on expensive manual labels [5]. Moreover, transformer-based architectures have 

shown better performance in sequential data analysis and thus are particularly suited for financial anomaly 

detection [6]. 

1.2. Significance of the Study 

This research proposes a transformer-based fraud detection model with self-supervised learning to enhance 

anomaly detection accuracy. Through training a Masked Transaction Model (MTM), the system can make masked 

transaction attribute predictions, enabling it to detect concealed fraud patterns [7]. This method minimizes the 

reliance on large labeled datasets, outdoing a common drawback in standard fraud detection [8]. 
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Self-attention mechanisms in transformers allow the model to examine short-term and long-term dependencies 

within transaction sequences, greatly improving fraud detection accuracy [9]. In contrast to traditional machine 

learning models that are based on handcrafted features, this research utilizes deep feature extraction, minimizing 

the possibility of human bias in fraud pattern detection [10]. 

1.3. Limitations of Existing Approaches 

Rule-based fraud detection systems are not adaptable to new fraud methods, since they are based on pre-defined 

fraud signals [11]. Machine learning models, while more adaptable, still need large amounts of labeled training 

data and are susceptible to concept drift when fraud patterns change [12]. Deep learning models like convolutional 

neural networks (CNNs) have been investigated, but they are not good at capturing temporal dependencies in 

transaction sequences [13]. 

Deep networks, such as recurrent neural networks (RNNs) and long short-term memory (LSTM) networks, have 

emerged as potential detectors of fraud but are computationally intensive and at risk of suffering from vanishing 

gradient problems [14]. Graph-based approaches towards fraud detection endeavor to capture relation among 

transactions, but they suffer from the difficulty of complex feature engineering and can be challenging for real-

time identification [15]. 

Transformers have proven to be a strong contender, outperforming traditional methods in sequential data tasks 

like natural language processing and time-series forecasting [16]. Their capacity to process all transaction 

sequences at once, as opposed to sequentially, enables faster fraud detection [17]. Yet, transformer-based fraud 

detection is still an unexplored field, and more research is needed to maximize its use in financial anomaly 

detection. 

2. Literature Survey 

2.1. Traditional Approaches in the Field 

Early detection of fraud was based on rule-based systems that detected anomalies according to predefined 

transaction limits [18]. They were good for the detection of straightforward fraud patterns but were ineffective 

against adaptive fraud strategies. Statistical models, including logistic regression, were subsequently developed 

to enhance fraud classification [19]. Their performance was, however, limited by their narrow feature 

representation. 

2.2. Recent Advances and Emerging Techniques 

Artificial intelligence and machine learning algorithms such as decision trees, support vector machines (SVMs), 

and deep networks have improved detection capabilities [20]. Neural networks like CNNs and LSTMs have also 

been employed for the analysis of transaction patterns [21]. It has been underscored in new research that fraud 

detection can gain from self-supervised learning wherein models learn using unlabeled transactions [22]. 

Transformers have been in vogue for financial use since they can model long-range relationships effectively [23]. 

Multi-head self-attention allows transformers to identify sophisticated patterns of fraud that other techniques 

would miss [24]. Studies have also examined the use of hybrids that include both transformers and autoencoders 

to detect anomalies [25]. 

2.3. Comparative Analysis of Existing Work 

Different techniques have been used to identify fraud, each with its own advantages and disadvantages. Rule-

based systems are easy to interpret and understand but are rigid and have high false negatives [26]. Logistic 

regression is statistically sound but performs poorly with intricate fraud patterns [27]. Decision trees are 

interpretable and have quick training but are susceptible to overfitting and thus less accurate in some situations 

[28]. Long Short-Term Memory (LSTM) networks can handle temporal dependencies but are computationally 

costly [29]. Convolutional Neural Networks (CNNs) perform well in local transaction feature extraction but are 

poor at sequential learning [30]. Finally, Transformers capture long-range dependencies in data but need big 

training data to perform well [31]. 

2.4. Research Gaps & Challenges 

In spite of the progress in fraud detection, there are a number of challenges. Most models need large labeled 

datasets, which are costly and time-consuming to acquire [32]. Conventional methods are not adaptable to new 

fraud strategies and have high false positive rates. Transformers are promising but need to be optimized further to 

minimize computational overhead and improve real-time fraud detection capabilities [33]. 
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3. Problem Statement 

3.1. Key Challenges in the Field 

Financial fraud detection is hampered by quickly changing fraud strategies that outsmart conventional rule-based 

systems. Current machine learning models, although effective, are plagued by label sparsity and high false 

positives [34]. Deep learning models like CNNs and LSTMs are also limited in learning sequential patterns, 

affecting fraud detection accuracy [35]. 

3.2. Need for a Novel Approach 

This study introduces a self-supervised transformer-based anomaly detection system to bypass these constraints. 

By utilizing a Masked Transaction Model (MTM), the introduced framework improves fraud pattern identification 

without the need for large amounts of labeled data. The self-attention mechanism of the transformer also enhances 

the accuracy of detection by capturing both short-term and long-term transactional relationships. This research 

wants to fill the gap between conventional and deep learning-based fraud detection, providing an extendable and 

versatile solution for real-time fraud protection. 

3.3. Objectives 

➢ Creating a self-supervised pretraining model (Masked Transaction Model - MTM) to acquire transaction 

feature dependencies without using labeled data. 

➢ Creating a transformer-based architecture that can efficiently learn temporal dependencies and 

transaction anomalies. 

➢ Improving fraud detection performance through minimizing false positives and maximizing 

classification accuracy. 

➢ Rolling out an in-stream fraud detection pipeline facilitating cloud-scale based auditing for transactions 

under scrutiny. 

➢ Benchmarking model performance with state-of-the-art fraud detection methods to showcase its 

effectiveness. 

4. Methodology 

The suggested TransSecure approach uses a Transformer-based model of anomaly detection with self-supervised 

learning for detecting suspicious financial transactions. Cloud-based data fetch is initiated followed by 

preprocessing the data to treat missing values, normalize features, and tokenize transactions. A pretraining Masked 

Transaction Model (MTM) masks random features in the Transformer, enhancing recognition of fraud patterns. 

The Anomaly Detection Module using Transformer picks up on dependencies in transactions and learns short-

term and long-term trends in fraud. A fraud likelihood score is calculated, and transactions above a certain 

threshold are marked. Lastly, marked transactions are stored in cloud-based audits for investigation. (Figure 1: 

Architecture Diagram). 

 

Figure 1: Architecture Diagram 

4.1. Cloud-Based Data Retrieval 

Cloud storage contains financial transaction data that is securely fetched. Transactions are in the form of a 

structured dataset having key attributes such as timestamps, types of transactions, amounts, sender and receiver 
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information, and fraud labels. This way, there is access to quality banking transaction data in real time for detecting 

fraud. 

We use a financial transaction dataset stored in the cloud with attributes: 

𝒟 = {𝑋𝑖 ∣ 𝑋𝑖 = (𝑠𝑖 , 𝑡𝑖 , 𝑎𝑖 , 𝑛𝑂𝑖 , 𝑜𝐵𝑖 , 𝑛𝐵𝑖 , 𝑛𝐷𝑖 , 𝑜𝐵𝐷𝑖 , 𝑛𝐵𝐷𝑖 , 𝑓𝑖, 𝑓𝑓𝑖)} (1) 

where: 

• 𝑠𝑖 = Time step of transaction 𝑖. 
• 𝑡𝑖 = Transaction type. 

• 𝑎𝑖 = Transaction amount. 

• 𝑛𝑂𝑖 , 𝑜𝐵𝑖 , 𝑛𝐵𝑖  = Sender details (name, old balance, new balance). 

• 𝑛𝐷𝑖 , 𝑜𝐵𝐷𝑖 , 𝑛𝐵𝐷𝑖 = Receiver details (name, old balance, new balance). 

• 𝑓𝑖 = Fraud label (1 if fraudulent, else 0). 

• 𝑓𝑓𝑖 = Flagged fraud (1 if flagged, else 0). 

4.2. Preprocessing 

Preprocessing consists of dealing with missing values, feature scaling, and tokenization. Statistical methods are 

used to impute missing values, thus making the data complete. Numerical transaction features are normalized to 

0 and 1 using Min-Max normalization. Categorical features like transaction type and account names are 

transformed into numerical embeddings for enhanced model learning. 

4.2.1. Missing Value Handling 

Missing values may skew fraud detection accuracy. To avoid this, continuous variables are imputed with the mean 

of known data. This guarantees that missing values do not cause bias or inconsistencies and maintain the validity 

of the transaction dataset for effective anomaly detection. 

Using mean imputation for continuous variables: 

𝑋𝑖
(𝑗)
=

{
 

 𝑋𝑖
(𝑗)
,  if 𝑋𝑖

(𝑗)
≠ NaN

1

𝑁
∑  

𝑁

𝑘=1

 𝑋𝑘
(𝑗)
,  otherwise 

 

(2) 

where 𝑋𝑖
(𝑗)

 is the 𝑗𝑡ℎ feature of transaction 𝑖. 

4.2.2. Feature Normalization 

Feature normalization normalizes the attributes of a transaction so that features with broader numerical ranges 

will not overwhelm the learning of models. Scaling to a range from 0 to 1 prevents the model from being affected 

by outlier transaction balances or amounts. 

We apply Min-Max Scaling to scale numeric values between [0,1]: 

𝑋𝑖
(𝑗)
=

𝑋𝑖
(𝑗)
−min(𝑋(𝑗))

max(𝑋(𝑗)) − min(𝑋(𝑗))
 

(3) 

4.2.3. Tokenization (For Categorical Features) 

Categorical data like transaction types and account IDs are represented in numerical format using embedding 

methods. This makes the model learn meaningful relationships between various attributes of transactions so that 

it can better identify fraudulent activity based on patterns in transactions. 

Categorical features 𝐷𝑖{𝑡𝑖 , 𝑛𝑂𝑖 , 𝑛𝐷𝑖} are converted to embeddings: 

𝐸𝑖 = Embedding(𝑋𝑖) (4) 

where 𝐸𝑖 is the learned numerical representation. 

4.3. Self-Supervised Pretraining (Masked Transaction Model - MTM) 

Self-supervised learning improves fraud detection through model training to forecast masked transaction 

attributes. Randomly chosen attributes are masked during training, and the model is trained to recover the masked 



           ISSN 2347–3657 

         Volume 10, Issue 1, 2022 

 
 

99 

attributes. Through this, the model is able to learn underlying relationships among transaction attributes, which 

enhances its capability to detect anomalies in financial transactions. 

We use a Masked Autoencoder approach: 

1. Randomly mask a fraction pp of transaction features. 

𝑋𝑖
𝑚𝑎𝑠𝑘𝑒𝑑 = 𝑋𝑖⊙𝑀 (5) 

where 𝑀 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝) is a binary mask. 

2. Train the model to reconstruct masked features using Mean Squared Error (MSE) Loss: 

ℒℳ𝒯ℳ =
1

𝑁
∑∑ (𝑋𝑖

(𝑗)
− 𝑋𝑖

(𝑗)̂
)
2

𝑗∈ℳ

𝑁

𝑖=1

 

(6) 

This forces the model to learn contextual dependencies between transaction features. 

4.4. Transformer-Based Anomaly Detection 

A transformer model is utilized for fraud detection because it can learn both short-term and long-term 

dependencies among transaction sequences. With the application of self-attention mechanisms, the transformer 

accurately models intricate interactions among various transaction attributes, enhancing fraud detection 

performance without the use of pre-specified rules. 

We feed the pre-trained embeddings into a Transformer Encoder: 

4.4.1. Self-Attention Mechanism 

Self-attention enables the transformer model to assign relative weights to the importance of every transaction 

feature. Through the calculation of attention scores, the model dynamically allocates importance to key transaction 

attributes, enhancing its capacity to identify fraudulent activity based on subtle patterns in transaction sequences. 

Each transaction sequence is represented as 𝑄, 𝐾, and 𝑉 matrices: 

Self-Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

(7) 

where 𝑑𝑘 is the dimension of key vectors. 

4.4.2. Multi-Head Attention 

Multi-head attention allows the model to attend to more than one fraud pattern at once. Rather than being based 

on one representation, multiple attention mechanisms identify different transactional dependencies so that the 

model can detect advanced fraudulent patterns involving changing transaction behavior between different 

accounts and timeframes. 

We use multiple self-attention heads to capture diverse fraud patterns: 

MultiHead(𝑄, 𝐾, 𝑉) = ∑ Self-Attention(𝑄ℎ , 𝐾ℎ, 𝑉ℎ)

𝐻

ℎ=1

 

(8) 

4.4.3. Transformer Output 

The transformer maps transaction information into a high-dimensional representation, which captures subtle 

patterns that differentiate fraudulent from normal transactions. This representation is used as an input to the fraud 

classification layer, allowing the model to utilize learned transaction relationships for effective anomaly detection. 

𝐻𝑖 = Transformer(𝐸𝑖) (9) 

where 𝐻𝑖  is the final high-dimensional representation of transaction ii. 

4.5. Fraud Score Computation 
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A fully connected neural network layer assigns a fraud probability score to each transaction. This probability score 

reflects the likelihood of fraudulent activity based on the transformed transaction representation. The fraud score 

enables dynamic decision-making by adjusting sensitivity to different fraud risk levels. 

A fully connected layer computes a fraud probability score: 

𝑃𝑓(𝑋𝑖) = 𝜎(𝑊
𝑇𝐻𝑖 + 𝑏) (10) 

where: 

• 𝑊 and 𝑏 are learned parameters. 

• σ(𝑥) =
1

1+𝑒−𝑥
 is the sigmoid function. 

4.6. Threshold-Based Classification 

A pre-calculated fraud threshold decides if the transaction is treated as fraudulent or not. A transaction is 

determined to be fraud if the fraud probability calculated passes the threshold and not otherwise. This threshold 

is tunable such that the fraud detection sensitivity and false positives may be optimized while minimizing the false 

positives. 

If 𝑃𝑓(𝑋𝑖) exceeds threshold 𝜏, the transaction is flagged as fraud: 

𝑓𝑖 = {
1, 𝑃𝑓(𝑋𝑖) > 𝜏

0,  otherwise 
 

(11) 

4.7. Cloud-Based Auditing 

Suspicious fraudulent transactions are retained in a cloud-based platform for subsequent analysis and 

investigation. This process allows for high-risk transactions to be further verified so that financial institutions can 

examine, audit, and update fraud detection models based on current fraud patterns. 

Flagged transactions are stored in the cloud for investigation: 

ℒaudit =∑  

𝑁

𝑖=1

𝑓𝑖log⁡ 𝑃𝑓(𝑋𝑖) 
(12) 

5. Results & Discussion 

5.1. Dataset Description 

The Fraudulent Transactions Data is a financial data set that consists of 6,362,620 transactions during a period of 

30 days (744 time steps). It has transaction type, value, account balance, and fraud tags, which support fraud 

detection analysis. The data separates the real and fraudulent transactions, where fraudsters try to withdraw money 

by unauthorized transfers and cash-outs. Its main features are timestamps of the transactions, sender/receiver 

information, and fraud indicators. This dataset is best suited for anomaly detection model training, fraud pattern 

identification, and assessment of financial security measures. 

 
Figure 2 Performance Metrices   Figure 3 Performance of FPR and FNR 
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The model has excellent classification performance of 99.31% accuracy, proving its efficiency in identifying 

fraudulent transactions. The precision of 99.54% reflects little to no false positives, while recall of 98.08% 

guarantees high detection of fraud cases. F1-score of 99.31% validates a perfect harmony between precision and 

recall. (Figure 2) 

The false positive rate (FPR) of 0.461% indicates an extremely low rate of genuine transactions being incorrectly 

labeled as fraud. The false negative rate (FNR) of 0.916% implies a negligible proportion of genuine fraud cases 

being undetected, ensuring high fraud detection efficacy. (Figure 3) 

 
Figure 4: ROC Curve     Figure 5: Precision-Recall Curve 

The model has an AUC-ROC value of 0.9934, reflecting its high discrimination power to differentiate between 

fraudulent and genuine transactions. A close-to-perfect ROC curve verifies strong discrimination power, with 

minimal overlap between fraud and non-fraud predictions, thus making it a trustworthy fraud detection system. 

(Figure 4) 

The precision score of 0.9922 is the average representing the confidence level of the model in ranking fraud 

transactions accurately. This precision-recall curve-based measure ensures better identification of fraud even in 

unbalanced datasets, demonstrating the model's capability to give correct priority to fraud cases. (Figure 5) 

6. Conclusion 

This work introduces TransSecure, a Transformer-based fraud detection model utilizing self-supervised learning 

towards enhanced anomaly detection in financial transactions. The Masked Transaction Model (MTM) improves 

pretraining, which allows the Transformer to predict masked transaction features and identify fraudulent patterns 

optimally. TransSecure achieves 99.31% accuracy, 99.54% precision, and AUC-ROC of 0.9934, outclassing 

standard machine learning models in fraud detection. The low false negative and false positive rates guarantee a 

reliable and well-balanced fraud classification system. This work sheds light on the applicability of self-attention 

mechanisms for fraud detection and calls for deeper investigation of hybrid self-supervised deep learning models 

to boost real-time financial security. Future research will extend this work towards large-scale fraud detection 

using multi-source financial data as well as optimizing Transformer architectures. 
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