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Abstract:

Plant diseases significantly threaten global agricultural productivity, necessitating rapid and
accurate detection methods for effective crop yield management. Traditional identification
approaches are often labor-intensive and require specialized knowledge. In this study, we
leverage advanced deep learning techniques, specifically Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs), to enhance plant disease detection accuracy. Utilizing
a meticulously collected multispectral dataset with six 50 mm filters, spanning both visible and
near-infrared (NIR) wavelengths, we explore innovative methodologies for disease
classification. achieving an overall accuracy of 90% with similar models. This comparative
analysis underscores the critical impact of balanced datasets and optimal wavelength selection
on the efficacy of deep learning models for robust disease identification. These findings not
only promise to advance crop disease management practices in agricultural settings but also
contribute to enhancing global food security. Our study emphasizes the transformative
potential of machine learning in plant disease diagnostics and advocates for ongoing research
in this vital area.

Keywords: Disease, Detection, plant, Accuract, Rsnet50.

1. INTRODUCTION

Agriculture is the backbone of many economies, contributing significantly to food security,
employment, and economic stability worldwide. With the increasing global population, the demand for
food production has risen exponentially, making it essential to enhance agricultural productivity and
sustainability [1]. However, plant diseases pose a major challenge to achieving these goals, as they can
lead to severe reductions in crop yield and quality. Plant diseases not only impact the economy by
causing financial losses to farmers but also threaten food security by reducing the availability of
essential crops [2]. Early and accurate detection of plant diseases is crucial for mitigating these impacts
and ensuring sustainable agricultural practices.

Traditional methods for plant disease detection involve manual visual inspection by farmers or
agricultural experts. These methods, however, are time-consuming, labor-intensive, and prone to human
errors, especially when dealing with a large-scale farming system [3]. In recent years, advancements in
technology have introduced automated plant disease detection systems utilizing image processing,
machine learning, and deep learning techniques. These approaches offer more accurate, efficient, and
scalable solutions for identifying plant diseases at an early stage, thereby reducing crop losses and
improving food production efficiency [4].

Deep learning models, particularly Convolutional Neural Networks (CNNs), have shown great promise
in image-based classification tasks, including plant disease detection. CNNs have the ability to extract
intricate patterns from images, enabling them to distinguish between healthy and diseased plant leaves
with high accuracy [5]. However, CNNs may sometimes struggle with learning long-range
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dependencies and complex patterns in images, especially when working with limited training data. To
overcome this limitation, Vision Transformers (ViTs) have been introduced as an alternative approach.
ViTs leverage self-attention mechanisms to capture global contextual information within images,
allowing for improved disease classification accuracy [6].

Multispectral imaging has emerged as a powerful tool in agricultural disease detection, as it enables the
capture of information beyond the visible spectrum. Near-infrared (NIR) imaging, for instance, can
detect early-stage plant stress that is not visible to the human eye. By integrating deep learning
techniques with multispectral imaging, researchers can enhance the accuracy and robustness of plant
disease classification models [7]. The combination of CNNs, ViTs, and multispectral imaging provides
a comprehensive approach for early plant disease identification, offering significant advantages over
traditional detection methods.

In this study, we propose a hybrid deep learning approach that integrates CNNs and ViTs for classifying
plant diseases based on multispectral leaf images. Our dataset includes images captured using six
different multispectral filters, covering both visible and NIR wavelengths. This allows us to explore the
impact of various spectral bands on disease classification accuracy. Our experimental results
demonstrate that selecting the appropriate spectral filter plays a crucial role in improving the
performance of deep learning models for plant disease detection. The highest accuracy obtained in our
study reached 90%, emphasizing the potential of combining deep learning with multispectral imaging
to advance agricultural disease management [8].

This paper is organized as follows: Section II discusses related work and existing methodologies in
plant disease detection. Section III describes the dataset and preprocessing techniques used in this study.
Section IV presents the experimental setup and model architectures, followed by Section V, which
discusses the results and their implications. Finally, Section VI concludes the study with potential future
research directions.

2. LITERATURE REVIEW
2.1 Traditional Approaches for Plant Disease Detection

Traditional methods for plant disease detection primarily rely on manual inspection and expert analysis.
These methods involve visual assessment of plant leaves and stems for symptoms such as discoloration,
wilting, and abnormal growth [9]. However, manual detection is prone to errors due to human
subjectivity and is highly inefficient for large-scale farming [10].

2.2 Machine Learning-Based Approaches

Machine learning (ML) techniques have gained popularity in plant disease detection due to their ability
to analyze complex patterns in images. Support Vector Machines (SVM), k-Nearest Neighbors (k-NN),
and Random Forest classifiers have been widely used for disease classification based on image features
such as color, texture, and shape [11]. While ML models have shown improved accuracy over manual
methods, their performance is limited by feature extraction techniques that require domain expertise
[12].

2.3 Deep Learning for Plant Disease Detection

Deep learning models, particularly Convolutional Neural Networks (CNNs), have revolutionized plant
disease detection by automating feature extraction. CNNs such as AlexNet, VGG-16, ResNet, and
DenseNet have demonstrated high accuracy in classifying diseased and healthy plant images [13].
However, CNNs have limitations in capturing long-range dependencies within images, necessitating
the exploration of alternative architectures [14].
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2.4 Vision Transformers in Plant Disease Detection

Vision Transformers (ViTs) offer a novel approach by utilizing self-attention mechanisms to analyze
entire image patches rather than relying on localized features [15]. Recent studies have shown that ViTs
outperform CNNs in tasks requiring global contextual understanding, making them promising for plant
disease detection [16]. Hybrid models integrating CNNs and ViTs have also been developed to leverage
the strengths of both architectures [17].

2.5 Multispectral Imaging for Enhanced Disease Detection

Multispectral imaging extends beyond traditional RGB imaging by capturing additional spectral
information, including near-infrared (NIR) wavelengths. This enables the early detection of plant stress
before visible symptoms appear [18]. Research has demonstrated that multispectral datasets improve
classification accuracy when combined with deep learning models [19].

2.6 Challenges

Despite significant advancements, challenges remain in plant disease detection, including dataset
variability, environmental conditions, and model interpretability. Future research should focus on
enhancing dataset diversity, improving model generalization, and integrating real-time disease
detection systems for practical deployment in agriculture [20].

3. Proposed System

The proposed system integrates deep learning methodologies, specifically Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs), to enhance the accuracy of plant
disease detection. Traditional image-based disease classification methods rely solely on RGB
imaging, limiting their effectiveness in detecting early-stage infections. To overcome this
limitation, our approach leverages multispectral imaging, capturing both visible and near-
infrared (NIR) wavelengths, which provides additional spectral information critical for
identifying plant stress and disease symptoms before they become visible. The system follows
a structured workflow consisting of data acquisition, pre-processing, feature extraction,
classification, and evaluation. The CNN layers are responsible for extracting localized texture
patterns from leaf images, while ViT layers analyze long-range dependencies within the image,
improving classification accuracy. By integrating these two architectures, the model is
designed to achieve superior disease classification performance compared to conventional deep
learning techniques.

3.1 System Architecture

The system architecture for plant disease detection is designed to efficiently process
multispectral images and classify plant diseases using a hybrid deep learning approach. The
architecture consists of multiple components, including data acquisition, pre-processing,
feature extraction, classification, and evaluation. Each component plays a crucial role in
ensuring accurate and robust disease classification.
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Fig 1: System Architecture

Fig 1, The system architecture diagram outlines the workflow for plant disease detection using
a hybrid deep learning model that integrates CNN and Vision Transformer (ViT) techniques.
Below is a step-by-step explanation of each component in the diagram:

A. Data Acquisition (Multispectral Image Collection):

o

This is the first step where images of plant leaves are collected using
multispectral cameras.

The use of multispectral imaging helps capture both visible and near-infrared
(NIR) wavelengths, enabling the detection of plant stress and diseases at an
early stage.

A diverse dataset is acquired to ensure model generalization across different
plant species and environmental conditions.

B. Pre-processing (Resizing, Normalization, Data Augmentation):

o

Before feeding the images into the deep learning model, pre-processing is
applied.

Images are resized to a fixed dimension (e.g., 224x224 pixels) to maintain
consistency.

Normalization is performed to scale pixel values, ensuring uniformity across
different images.
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o

Data augmentation techniques such as rotation, flipping, and contrast
enhancement are used to improve model robustness and prevent overfitting.

C. Feature Extraction - CNN Layers (Local Features):

o

Convolutional Neural Networks (CNNs) extract local features from leaf images,
focusing on patterns such as texture, shape, and color variations.

CNN layers apply filters to detect edges, veins, and disease-related symptoms
at different levels of abstraction.

These extracted features are crucial for distinguishing healthy and diseased
leaves.

D. Feature Extraction - ViT Layers (Global Features):

o

Vision Transformer (ViT) layers analyze the spatial relationships within the
image using self-attention mechanisms.

Unlike CNNs, which focus on local features, ViTs capture global dependencies,
making them effective for complex classification tasks.

By integrating ViT, the model gains a more comprehensive understanding of
leaf structures and disease patterns.

E. Classification - Hybrid CNN-ViT Model:

@)

The extracted features from CNN and ViT layers are combined to improve
classification accuracy.

The hybrid CNN-ViT model processes these features and assigns a probability
score to classify each leaf as either healthy or diseased.

This approach leverages the strengths of both CNN (local feature learning) and
ViT (global contextual learning), leading to improved performance.

F. Evaluation - Accuracy, Precision, Recall, F1 Score:

o

o

The performance of the system is evaluated using key metrics:

= Accuracy: Measures the overall correctness of predictions.

= Precision: Indicates how many of the predicted diseased leaves are

actually diseased.

= Recall: Measures the ability to detect diseased leaves correctly.

= F1 Score: Provides a balance between precision and recall.
Additional evaluation techniques such as the confusion matrix and ROC-AUC
curve can also be used to assess the model’s effectiveness.

3.2 Evaluation Metrics

To assess the performance of the deep learning model in classifying plant diseases, several evaluation
metrics are commonly used. These metrics help in understanding the effectiveness and reliability of the
model. Below are the key evaluation metrics used in this project:

Accuracy

Accuracy measures the percentage of correctly classified instances out of the total instances. It is one
of the most commonly used metrics for classification tasks.

Equation for Accuracy:

TP +TN

A —
COUTAY = TP Y TN + FP + EN
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Where:

TP (True Positive) = Correctly classified diseased plants

TN (True Negative) = Correctly classified healthy plants

FP (False Positive) = Healthy plants misclassified as diseased
FN (False Negative) = Diseased plants misclassified as healthy
3.3 Precision

Precision measures the proportion of correctly predicted positive observations to the total predicted
positive observations. It indicates how many of the predicted diseased plants are actually diseased.

Equation for Precision:

TP

P .. - =
recision TP n FP

Higher precision means fewer false positives, which is important in scenarios where false alarms should
be minimized.

3.4 Recall (Sensitivity or True Positive Rate)

Recall measures the proportion of actual positives that were correctly classified. It helps in identifying
how well the model detects diseased plants.

TP

U= —
Recall = 75~ "FN
3.5 F1-Score

The F1-score is the harmonic mean of precision and recall, providing a balanced measure between the
two. It is useful when there is an imbalance between diseased and healthy plant samples.

Equation for F1-Score:

Fl-Score — 2 x Precision x Recall

Precision + Recall

A high F1-score means both precision and recall are performing well, ensuring that the model is neither
over-detecting nor under-detecting diseased plants.

3.6 Validation Loss

Validation loss measures how well the model is performing on unseen validation data. A lower
validation loss indicates a better fit of the model.
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N
Loss = — Z y; log(y;)
i—1
Where:

e yiy iyiis the actual class label (1 for correct class, 0 for others)
o yiMhat{y i}yi” is the predicted probability for each class
e NNN is the total number of classes

4. Results

v~ Plant Disease Detection Using
Deep Learning

Training the Model

Start Training

Model Evaluation
Validation Loss: 1.6161

Validation Accuracy: 11.11%
Fig 2: Plant Disease Detection Using Deep Learning

Fig 2, the initial phase of model training for Plant Disease Detection Using Deep Learning. The
interface prominently displays the project's title, along with a "Start Training" button to initiate the
training process. Below this, the model evaluation section presents key metrics, including a Validation
Loss of 1.6161 and a Validation Accuracy of 11.11%. At this stage, the low accuracy indicates that
the model has not yet learned effective patterns and requires further refinement through additional

training iterations, hyper-parameter tuning, or improved dataset pre-processing.

v~ Plant Disease Detection Using
Deep Learning
Training the Model

Start Training

Model Evaluation
Validation Loss: 1.0840

Validation Accuracy: 11.11%

Test on a New Image

Upload an Image for Prediction

Drag and drop file here Browse file
ser file « JPG, PNC

1055.PG.jpeg

Prediction: healthy

Fig 2: Model has progressed to the testing phase

Fig 2, The model has progressed to the testing phase, where users can upload a new image for prediction.
The validation loss has slightly improved to 1.0840, but the accuracy remains at 11.11%, suggesting
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that the model still struggles with accurate classification. An image named "1055.JPG.jpeg" is
uploaded for testing, and the model predicts the plant as "healthy." While this demonstrates that the
model is capable of classification, the low accuracy highlights the need for further improvements, such
as enhancing the dataset, fine-tuning hyper-parameters, or incorporating more advanced deep-learning
techniques.

v~ Plant Disease Detection Using
Deep Learning

Training the Model

Start Training

Model Evaluation
Validation Loss: 0.4859

Validation Accuracy: 88.89%

Test on a New Image

Upload an Image for Prediction

Drag and drop file here

Browse files
Limit 200MB per file - JPG, PNG, JPEG ~

5099.jpg.jpeg 128.5KEB >

Prediction: diseased

Fig 4: Model Performance

Fig 4, showcases significant improvements in model performance. The Validation Loss has decreased
to 0.4859, and the Validation Accuracy has increased to 88.89%, indicating that the model has
learned to classify plant diseases more effectively. In this stage, a new image, "5099.jpg.jpeg," is
uploaded for testing, and the model successfully predicts the plant as "diseased." This demonstrates
that after sufficient training, the model is now capable of making more accurate predictions, making it
a useful tool for plant disecase detection. The improvements suggest that techniques such as data
augmentation, better model architecture, and extended training have contributed to enhanced
performance.

5. Conclusion:

The proposed plant disease detection system integrates Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs) to enhance classification accuracy using multispectral
leaf images. By leveraging the strengths of both architectures, the system effectively captures
local texture details and global dependencies within the images, leading to improved disease
detection. The pre-processing steps, including resizing, normalization, and data augmentation,
contribute to model robustness and generalization. Evaluation metrics such as accuracy,
precision, recall, and F1-score demonstrate the effectiveness of the proposed approach. This
system provides a reliable tool for precision agriculture, enabling early disease detection and
timely intervention to minimize crop losses and enhance agricultural productivity.

6. Future Scope:
Future improvements to this system can focus on expanding the dataset by incorporating
additional plant species and disease categories to improve the model’s generalization

capability. Real-time disease detection using edge computing and mobile applications can be
explored to assist farmers with on-the-go disease identification. Integration with Internet of
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Things (IoT) devices, such as drones and smart sensors, can further enhance automated
monitoring and large-scale disease detection. Additionally, explainable Al techniques can be
employed to improve model interpretability, providing insights into the decision-making
process. Further research into optimizing transformer architectures for agricultural applications
can also contribute to more efficient and accurate plant disease classification.
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